
Linear Algebra 1, University of Groningen H.M. Goossens

Lecture 1

Definitions:

Linear equation inn unknowns m× n system:
Definition lin. system ofm equations inn unknowns.

Regular form: a1x1 + anxn = b a11x1 + a12x2 + . . .+ a1nxn = b1
a21x1 + a22x2 + . . .+ a2nxn = b2

...
am1x1 + am2x2 + . . .+ amnxn = bm

Solution: nnumbers, satisfies allm equations

Example

2× 2 2× 3 3× 2
7x1 + x2 = 2 x1 + x2 − x3 = 2 x1 + x2 = 2
x1 + 4x2 = 3 2x1 + x2 + x3 = 4 x1 − x2 = 1

x1 = 4
a1, . . . , an&b or aij , bi real numbers, x1, . . . , xn in both situations variables.

type of solutions:
(1) inconsistent: no solutions.
(2) consistent: if it has at least one solution.
(3) Solution set: set of all solutions

Example:

System x1 + x2 = 2 x1 + x2 = 2 x1 + x2 = 2
x1 − x2 = 2 x1 + x2 = 1 −x1 − x2 = −2

Type of solution Consistent incosistent consistent
Exactly one solution infintely many solutions,

(x1, x2) = (2, 0) (x1, x2) = (a, 2− a) where a ∈ R

Definitions (2):

Equivalent systems: 2 lin. system of equations, same number of unknowns, same solution set.

Consider the linear system of equations, like in the tabel above, then we have:
Coefficient matrix Augmented matrix: a11 a12 ... a1n

a21 a22 ... a2n
...

...
...

...
am1 am2 ... amn


 a11 a12 . . . a1n b1

a21 a22 . . . a2n b2
...

...
...

...
am1 am2 . . . amn bm


Pivot: the first nonzero entry in thePivotal row:The first row.

Square Matrix: when then number of rows are equal to the number of unknowns.

Elementary row operation:
(1) Interchange two rows
(2) Multiply a row by a nonzero real number
(3) Replace a row by its sum with a multiple of another row.
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Strict triangular form:
kth equation, coefficient of the first k − 1 variable are all zero, coefficient ofxk is nonzero

Type of systems:
Overdetermined system:if there are more equations then unknowns. Usually (not always) inconsis-
tent.
Underdetermined system: if there are fewer equations than unknowns.
Homogeneous: If the constants on the right-handside are all zero. Are always consistant. Has a
nontrivial solution ofn > m

Type of variables.
Lead variables: the first nonzero element in each row of the row echelon form.
Free variables: All elements that are not lead variables.

Row echelon form:

(1) first nonzero entry each nonzero row is 1.
(2) row k does not consist entirely zeros, number of leading zero’s in k + 1 greater than number
leading zero’s k
(3) Rows with entries all zero, below rows having nonzero entries.

Gaussian elimination: The proces of using row operations to transform a linear system into
one whose augmented matrix is in row echelon form.

Examples:

Lead and free variables:
When we have the matrix:(

1 2 3 4 5
0 0 1 2 3
0 0 0 0 1

)
thenx1, x3, x5 are the lead variables, and the other variables (x2, x4) are the free vari-

ables.
Row echelon form and not row echelon form:

Row echelon form
(

1 0 2
0 1 7
0 0 1

) (
1 0 5 0
0 0 1 2
0 0 0 0

)
NOT Row echelon form:

(
1 2 4
0 2 0
0 0 1

)
( 0 1
1 0 ) ( 0 1

1 0 )

Bring a augmented matrix in Row echelon form:
1: 1 1 1 1 1 1

0 0 1 1 2 0
0 0 2 2 5 3
0 0 1 1 3 1
0 0 1 1 3 0

→ (3) = (3)− 2(2)
(4) = (4)− (2)
(5) = (5)− (2)

→

 1 1 1 1 1 1
0 0 1 1 2 0
0 0 0 0 1 3
0 0 0 0 1 1
0 0 0 0 1 0

→ (4) = (4)− (3)
(5) = (5)− (3)

→

 1 1 1 1 1 1
0 0 1 1 2 0
0 0 0 0 1 3
0 0 0 0 0 −2
0 0 0 0 0 −3


→ (4) = − 1

2 (4)
(5) = (5) + 3(4)

→

 1 1 1 1 1 1
0 0 1 1 2 0
0 0 0 0 1 3
0 0 0 0 0 1
0 0 0 0 0 0


These last matrix is incosistent. We see that in the last two rows. They say namely that 0x1 +0x2 +
0x3 + 0x4 + 0x5 = 1 so 0 = 1 which is not true.
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2:(
−1 −4 0 −5 −1 −6
5 20 1 29 5 34
4 16 1 24 1 30

)
→ (1) = −(1)→

(
1 4 0 5 1 6
5 20 1 29 5 34
4 16 1 24 1 30

)
→ (2)=(2)-5(1)

(3)=(3)-4(1)
→
(

1 4 0 5 1 6
0 0 1 4 0 4
0 0 1 4 −3 6

)
→ (3) = (3)− (2)→

(
1 4 0 5 1 6
0 0 1 4 0 4
0 0 0 0 −3 2

)
→ (3) = − 1

3 (3)→
(

1 4 0 5 1 6
0 0 1 4 0 4
0 0 0 0 1 − 2

3

)
Lead variables:x1, x3, x5
Free variables:x2, x4
By back sabstitution:
x5 = 2&x3 = 4− 4x4&x1 = 4− 4x2 − 5x4

Definition (3)

A matrix is in thereduced row echelon forwhen:
(1) It is in row echelon form
(2) The first nonzero entry in each ROW is the only nonzero in its COLUMN.

Gauss-Jordan reduction:The process of using elementary row operations to transform a matrix
into reduced row echelon form.

Example:

In reduced row echelon form: NOT in the reduced row echelon form(
1 2 0 3
0 0 1 4
0 0 0 0

) (
1 0 2 3
0 0 1 4
0 0 0 0

)(
1 0 0 2
0 1 0 3
0 0 1 4

) (
1 2 0 3
0 0 1 4
0 0 0 1

)
From row echelon form to reduced row echelon form:
The professor used other matrices/ But every matrix in row echelon form can be reduced to a matrix
in reduced row echelon form, so i will use the matrix we already used before.

1:
For the first matrix, I used the matrix like before, but then with 3 equations to make it consistent.
So I will use:(

1 1 1 1 1 1
0 0 1 1 2 0
0 0 0 0 1 3

)
→ (1) = (1)−(2)→

(
1 1 0 0 −1 1
0 0 1 1 2 0
0 0 0 0 1 3

)
→ (1) = (1)+(3)→

(
1 1 0 0 0 4
0 0 1 1 2 0
0 0 0 0 1 3

)
→

(2) = (2)− 2(3)→
(

1 1 0 0 0 4
0 0 1 1 0 −6
0 0 0 0 1 3

)
which is in the reduced row echelon form.

2:(
1 4 0 5 1 6
0 0 1 4 0 4
0 0 0 0 1 − 2

3

)
→ (1) = (1) − (3) →

(
1 4 0 5 0 6 2

3
0 0 1 4 0 4
0 0 0 0 1 − 2

3

)
which is already in the reduced row

echelon form.
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Application:

Kirchoff’s Laws:

(1) At every node the sum of the incoming currents equal the sum of the outgoing currents.
(2) Around ever closed loop, the algebraic sum of the voltage gains must equal the algebraic sum of
the voltage drops.

The voltage dropsE for each resistor by Ohm’s Law:E = iRwhere i current in amperes,R in ohms.

Chemical equations:

Photosynthesis:
x1CO2 + x2H2O → x3O2 + x4C6H12O6

First balans carbon, oxigen and hydrogen:
H O C

2x2 = 12x4 2x1 + x2 = 2x3 + 6x4 x1 = 6x4
x1 − 6x4 = 0
2x1 + x2 − 2x3 − 6x4 = 0
2x2 − 12x4 = 0
So we see thatx1 = x2 = x3 = 6x4
If we takex4 = 1,thenx1 = x2 = x3 = 6
So then we have: 6CO2 + 6H2O → 6O2 + C6H12O6
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Lecture 2

Theorem:

Everym× n homogeneous system has a nontrivial solution ifn > m

Proof:

(-) homogeneous system⇒ at mostm nonzero row’s⇒ at mostm lead variables.
(-)n unknowns butn > m so at leastn−m > 0 free variables.
(-) Choose at least one free variables nonzero→ nonzero solution.

Notations for matrices and vectors:

Matrices denoted by capital letters.
When matrixA has i rows and j columns thenA = (aij)
m× n matrix
Rm×n denotes the set of allm× n matrices with real enteries.

Row vector Column Vector
1× n matrix n× 1 matrix

~y = ( y1 yn ... ym ) x =

 x1
x2

...
xn


So whenA is anm× n matrix, thenA =

 ~a1

~a2

...
~am

 = ( a1 a2 ... an )

Definition (2)

Algebraic properties:

Let’s say we have twom× n matrices:A&B
(-)A = B iff aij = bij for each i and j
(-)αA is them× n matrix whose entry isαaij
(-)A = (aij) andB = (bij) thenA+B = (aij + bij) which ism× n
(-)zero matrixO the matrix whose entries are all zero.
(-)C = AB which is anm timesm matrix. Only defined when the number of columns ofA equal to
the number of rows ofB. Calculation by Falk’s scheme.

SoAB = (Ab1, . . . , Abn) and cij = ~aibj =
b∑

k=1

aikbkj

Matrix multiplication and linear systems:

We see thatAx = b where:

A =

 a11 a12 ... a1n
a21 a22 ... a2n
...

...
...

am1 am2 ... amn

 and x =

 x1
x2

...
xn

 and b =

 b1
b2
...
bm


BecauseAx =

 a11x1+a12x2+...+a1nxn
a21x1+a22x2+...+a2nxn

...
am1x1+am2x2+...+amnxn

 =

 b1
b2
...
bm

 =

 ~a1x
~a2x

...
~anx

 = x1a1 + . . .+ xnan
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Example:

Scaler multiplication:A = ( 1 2 0
3 0 5 )⇒ 3A = ( 3 6 0

9 0 15 )

Sum:
(

1 0
2 5
0 3

)
+
(

4 1
6 0
7 3

)
=
(

5 1
8 5
7 6

)
and ( 2 3

4 1 )− ( 0 2
1 0 ) = ( 2 1

3 1 )

Multiplication:

A =

(
1 1
3 2
5 4
2 3

)
andB =

(
0 3 4
2 −2 −4

)
CalculateC = AB(

0 3 4
2 −2 −4

)(
1 1
3 2
5 4
2 3

) (
2 1 0
4 5 4
8 7 4
6 0 −4

)
SoC =

(
2 1 0
4 5 4
8 7 4
6 0 −4

)
Explanation first entry:
cij = ai1b1j + ai2b2j + . . .+ ainbnj ⇒ c11 = a11b11 + a12b21 = 1 · 0 + 0 · 2 = 0 + 2 = 2
Linear combination of the vectors a1, . . . ,an:
c1a1 + . . .+ cnan if a1, . . . ,an vectors inRm and c1, . . . , cn scalers.

Consistency Theorem linear systems: linear systemAx = b consistent iff b can be written as
linear combination of the column vectors ofA

Example:

Is the linear system:
x1 + 2x2 = 1
2x1 + 4x2 = 1
Consistent? The answer is yes because:
The vector ( 1

1 ) can be written as a linear combination of the column vectors ( 1
2 ) and ( 2

4 ).
x1 ( 1

2 ) + x2 ( 2
4 ) =

(
x1+2x2
2x1+4x2

)
Algebra of matrices and the transpose of a matrix:

Provided indicated operations are defined, the following statement holds for all scalersα, β and ma-
tricesA,B,C
A+B = B +A
(A+B) + C = (A+B) + C
(AB)C = A(BC)
A(B + C) = (AB + (AC)
(A+B)C = (AC +BC)
(αβ)A = α(βA)
α(AB) = (αA)B = A(αB)
(α+ β)A = αA+ βA
α(A+B) = αA+ αB
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Transpose:
(-) Transpose ofm× n matrixA is then×m matrixB = (bij) where bij = aji
(-)AT is the transpose ofA
(-)Symmetric matrix: square matrix whereAT = A for example In
(-) Algebraic rules:
(AT )T = A
(αA)t = αAT

(A+B)T = At +BT

(AB)T = BTAT

Examples:

A ( 1 2 3 4 ) ( 1 2 3
4 5 6 )

(
1 2 3
2 4 5
3 5 6

)
AT

(
1
2
3
4

) (
1 4
2 5
3 6

) (
1 2 3
2 4 5
3 5 6

)
Symmetric

Identity matrix:

Then× n identity matrix is the matrix In = (δij) where δij =

{
1 if i = j

0 otherwise

For example:

I1 = 1&I3 =
(

1 0 0
0 1 0
0 0 1

)
Multiplicative inverse:

Nonsignular or invertible matrix: if there exists an matrixBn×n s.t.AB = BA = In thenA is
nonsingular.
Notation inverse of nonsingular matrixA isA−1

singular: when ann × n matrix does not hav ea multiplicative inverse. AnN × nmatrix is said
to be nonsingular if it does not have a multiplicative inverse.

Theorem:

(1) a matrix can have at most one inverse.
(2)IfA andB are nonsingularn× n matrix then AB is also nonsingular and (AB)−1 = B−1A−1

Proof:

(1) Suppose B andC both inverses of A,whereA is nonsingular
B = BI = B(AC) = (BA)C = IC = C
SoB = C soA has one multiplicative inverse.
(2) (B−1A−1)(AB) = B−1(A−1A)B = B−1InB = B−1B = In
(AB)(B−1A−1) = A(BB−1)A−1 = AInA

−1AA−1 = In
→ AB is nonsignular and its inverse is B−1A−1
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Examples:

Find the multiplicative inverse ofA = ( 1 1
0 0 )

DefineB =
(
b11 b12
b21 b22

)
So we see thatAB =

(
b11+b21 b12+b22

0 0

)
andBA =

(
b11 b11
b21 b21

)
we want that those matrices both equal I2 = ( 1 0

0 1 )
So:
(
b11+b21 b12+b22

0 0

)
=
(
b11 b11
b21 b21

)
= ( 1 0

0 1 )
We see that b11 + b12 = b11 = 1 therefore b11 = 0
We also see that b12 + b21 = b11 we said that b11 = 0, but b12 + b21 = b11 must equal 1
Therefore,A has no multiplicative inverse.

Application:

This is a walk on a graph, which we also have seen at Kaleidoscope (part 2).
We define aij as follows:

aij =

{
1 if {Vi, Vj} is an edge of the graph

0 if there is no edge joiningVi andVj
Adjacency matrix of the graph: the matrixAwhereA = (aij)
The matrixA called the adjacency matrix of the graph, is as follows:

A =

(
0 1 0 0 0
1 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 1 1 1 0

)
when {Vi, Vj} edge on graph then aij = aji = 1, otherwise aij = aji = 0

From this we can conclude the following:

IfA is an n× n matrix, of a graph and a
(k)
ij represents the (i, j) entry ofAk, then a

(k)
ji is equal to the

number of walks of length k fromVi toVj
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Lecture 3

Equivalent systems:

Reason:
Ax = b which is anm× n linear system.
⇔MAx = Mb⇔M−1(MAx̂) = M−1(Mb)⇔ Ax̂ = b⇔ Ux = c
Use of a sequence nonsingular matricesE1 . . . E)k give us:U = Ek . . . E1A and c = Ek . . . E1b
The system will be equivalent ifM is nonsignular whereM = Ek . . . E1

We know thatM is nonsingular, because it is a product of nonsingular matrices.

Elementary matrix: a matrix that represents an elementary row operator.

Elementary matrices types:

Type Definition Example

1 obtained by interchanging 2 rows of I E1 =
(

0 1 0
1 0 0
0 0 1

)
the first and

second row of I3 are swapped.

2 Obtained by multiplying a row E2 =
(

1 0 0
0 1 0
0 0 2

)
by a nonzero number. last row of I3 multiplied by 2

3 adding a multiple of one row E3 =
(

1 0 3
0 1 0
0 0 1

)
to another, from matrix I in I3 : (1) = (1) + 3(3)

Theorem and Proof:

Elementary matrices nonsingularityE elementary matrix→ E nonsingular→ E−1 elemen-
tary matrix same type.

I proof this by example:
Type calculations conclusion

1 E1 =
(

0 1 0
1 0 0
0 0 1

)
·
(

0 1 0
1 0 0
0 0 1

)
= I3 → E−11 = E′1

2
(

1 0 0
0 1 0
0 0 2

)
·
(

1 0 0
0 1 0
0 0 1

2

)
= I3 → E−12 = E′2

3
(

1 0 3
0 1 0
0 0 1

)
·
(

1 0 −3
0 1 0
0 0 1

)
= I3 → E−13 = E′3

Row equivalent

A matrixB is row equivalent to a matrixA if there exist elementary matricesE1, E2, . . . Ek s.t.
B = Ek · Ek−1 · E2 · E1A

Theorem:

(1) WhenA is row equivalent toB thenB is row equivalent toA
(2) Let A be a square matrix, then the following statements are equivalent:
(a)A is nonsingular
(b)Ax = 0 has only the trivial solution. 0
(c)A is row equivalent to I
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Proof:

(1):
WhenA is row equivalent toB then:
A = Ek · Ek−1 · . . . · E2 · E1 ·B
→ A · E−1k = Ek · E−1k · Ek−1 · . . . · E2 · E1 ·B
→ A · E−1k = Ek−1 · . . . · E2 · E1 ·B
→ A · E−1k · E

−1
k−1 = Ek−2 · . . . E2 · E1 ·B

Do this till the righthandside is equal toB
A · E−1k · E

−1
k−1 · . . . · E

−1
2 · E−11 = B

If A is rowequivalent toB andB is row equivalent toC then A is also row equivalent to C

(2):
If (a) holds, then (b) must hold.
Let x be s.t. Ax = 0 then, x = Ix = A−1Ax = A−10 = 0

If (b) holds, then (c) must holds.
(-)Applying elementary row operations toAx = 0 we obtainUx = 0 whereU is in reduced row
echelon form.
(-) If U has a zero row, there would be a nonzero solution, because there must be at least one free
variable.
Therefore, U has no such rows, since it is in reduced row echelon form, we see thatU = I

If (c) holds, then (a) must holds.
(-)A = EkEk−1 . . . E2E1I = EkEk−1 . . . E2E1

(-) Elementary matrices are nonsingular and product of nonsingular matrices is nonsingular so A is
also nonsingular.

Inverse computation application:

Ax = b then x = A−1b

Observation:

Square matrix A nonsinuglar↔ I is row equivalent toA
I = EkEk−1 . . . E2E1A→ E−11 E−12 . . . E−1k−1Ek = A
substitute this we find, A(EkEk−1 . . . E2E1) = I

Conclusion and computation:

Conclusion:A−1 = EkEk−1 . . . E2E1

Conclusion:
AB = I → BA = I
Transform the matrix

[
A I

]
into reduced row echelon form. IfA is nonsingular, then you will

obtain
[
I A−1

]
since:

EkEk−1 . . . E2E1

[
A I

]
=
[
I A−1

]
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Example:

A = ( 2 4
3 2 )(

2 4 1 0
3 2 0 1

)
⇒ (1) = 1

2 (1)⇒
(

1 2 1
2 0

3 2 0 1

)
⇒ (2) = −3(1) + 2

⇒
(

1 2 1
2 0

0 −4 − 3
2 −3

)
⇒ (2) = − 1

4 (2)⇒
(

1 2 1
2 0

0 1 3
8 − 3

4

)
⇒ (1) = −2(2)+(1)⇒

(
1 0 − 1

4
3
2

0 1 3
8 − 3

4

)
So

A is nonsingular.

Application of nonsingularity to linear (square) systems:

The linear system Ax = b whereA = n× n it has a unique solution↔ A is nonsingular.

Proof:

Proof 1:
SupposeA is nonsingular: x satisfies: Ax = b thenA−1Ax = A−1b → x = A−1b so unique
solution.
Proof 2:
(-) Suppose that x̂ is the unique solution ofAx = b
(-) Let z be such that:Az = 0 A is namely nonsingular if and only if z = 0
(-) Note thatA(x̂ + z) = Ax̂ +Aẑ = Ax̂ = b
(-) Uniqueness implies that x̂ + z = x̂ hence z = 0
(-) Consequently,A is nonsingular.

Elementary triangular factorization:

A square matrix is said to be:
(-) upper triangular if aij = 0 for i > j
(-) lower triangular if aij = 0 for i < j
(-) Triangular if it is either upper triangular or lower triangular.
(-) Diagonal: If aij = 0 for i 6= j.
(-) strict upper (lower) triangular if it is upper (lower) triangular and every diagonal entry is nonzero.

Triangular (LU) factorization of elementary matrices:

If square matrixA can be geduced to strict upper triangular form by (3), then it can be written by
an lower (L) and upper (U) triangular matrix⇒ factorization: LU factorization.

Example:

Strict upper triangular:(
1 2 4
2 5 10
3 7 13

)
(

1 2 4
2 5 10
3 7 13

)
⇒ (2)=-2(1)+(2)

(3)=-3(1)+(3)
⇒

(
1 2 4
0 1 2
3 1 1

)
⇒ (3) = −(2) + (3)⇒

(
1 2 4
0 1 2
0 0 −1

)
(

1 2 4
2 5 10
3 7 13

) (
1 0 0
−2 1 0
0 0 1

)(
1 0 0
0 1 0
−3 0 1

) (
1 0 0
0 1 0
0 −1 1

)
=
(

1 2 4
2 5 10
3 7 13

)
So therefore we know:(

1 2 4
0 1 2
0 0 −1

)
=
(

1 0 0
0 1 0
0 −1 1

)(
1 0 0
0 1 0
−3 0 1

)(
1 0 0
−2 1 0
0 0 1

)
A
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Take the inverse of the first 3 matrices on the left hand side, and multiply everything out, then you
get:

A =
(

1 0 0
2 1 0
3 1 1

)(
1 2 4
0 1 2
0 0 −1

)
The left one is a lower triangular, and the right one is upper triangular.

Partioned matrices:

Rules:
(-) IfAm×n andBn×r has been partitioned into columns ( b1 b2 ... bn ) then AB = (Ab1 Ab2 ... Abr )
(-) IfB = (B1 B2 ) where (B1)n×t and (B2)n×(r−t),andAm×n thenAB = (AB1 AB2 )

(-)A =
(
A1

A2

)
where (A1)k×n and (A2)(m−k)×n thenAB =

(
A1B
A2B

)
(-)A = (A1 A2 ) andB =

(
B1

B2

)
thenAB = A1B1 +A2B2

(-)A =
(

A11 A12
A21 A22

)
andB =

(
B11 B12
B21 B22

)
then:AB =

(
A11B11 +A12B21 A11B12 +A12B22
A21B11 +A22B21 A21B12 +A22B22

)
Scaler product or inner product:xTy where x,y ∈ Rn
Inner product:xyT where x,y ∈ Rn
Outer product expansion:XY T whereX is anm× n matrix andY an k × n matrix.

term 1b 2020-2021 Page 12



Linear Algebra 1, University of Groningen H.M. Goossens

Lecture 4

Determinants:

Definition 1: A = (aij) which isn × n. ThenMij denote the (n − 1) × (n − 1) matrix, obtained
by deleting the row and column ofA which ocntains aij
Definition 2: Determinant ofn× n matrix (det(A)) scaler defined by:

det(A) =

{
a11 ifn = 1

a11A11 + a12A12 + . . .+ a1nA1n ifn > 1

WhereAij = (−1)i+j det(Mij)

(-) det(Mij) minor of aij
(-)Aij cofactor of aij

Example:

A =
(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)
thenM11 = ( a22 a23a32 a33 ) andM32 = ( a11 a13a21 a23 )

Cofactor expansion:

A ∈ Rn×n withn ≥ 2? det(A) by cofactor expansion along any row and column.
(-) Row: det(A) = ai1Ai1 + ai2Ai2 + . . .+ ainAin
(-) Column: det(A) = a1jA1j + a2jA2j + . . .+ anjAnj

Examples:

F =
(
a b
c d

)
P =

(
a b c
d e f
g h i

)
Cofactor expansion along row 1 Cofactor expansion along row 1

det(F ) = a11A11 + a12A12 det(P ) = (−1)1+1a
∣∣ e f
h i

∣∣+ (−1)1+2
∣∣∣ d fg i ∣∣∣

= (−1)1+1a11 det(M11) + (−1)1+2a12 det(M12) +(−1)1+3c
∣∣ d e
g h

∣∣
= (−1)1+1a det(d) + (−1)1+2bdet(c)

= ad− bc = aei+ bfg + cdh− gec− hfa− idb
Saurus’ rule (only forn = 3)!!!!

Theorem:

LetA be a square matrix, Then, the following statements holds.
(1) det(A) = 0 when:
(a)A has a zero row
(b) orA has a zero column
(c) orA has two identical columns
(d) orA has two identical rows.
(2) A triangular matrix?det(A) = product diagonal entries.
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Example:

T =

(
1 7 1 3
3 0 0 1
0 1 0 0
1 9 3 2

)
Cofactor expansion along row 3

det(T ) = (−1)3+2 det
(

1 1 3
3 0 1
1 3 2

)
= −(−3 det ( 1 3

3 2 )− 1 det ( 1 1
1 3 )) = 3(2− 9) + (3− 1) = −19

Lemma

LetA be an× n matrix. If i 6= j then ai1Aj1 + ai2Aj2 + . . .+ ainAjn = 0

A =



a11 ... a1n
...

...
ai1 ... ain
...

...
aj1 ... ajn

...
...

an1 ... ann

→ A∗ =



a11 ... a1n
...

...
ai1 ... ain
...

...
ai1 ... ain
...

...
an1 ... ann


0 = det(A∗) ’cause it has two identity rows.
0 = ai1A

∗
j1 + ai2A

∗
j2 + . . .+ ainA

∗
jn = ai1Aj1 + ai2Aj2 + . . .+ ainAjn

Effect of elementary row operations:

Type Rule Calculations conclusion

1 Two rows interchanged A =
(
a b
c d

)
,E = ( 0 1

1 0 ) So det(EA) = −det(A)
SoEA =

(
c d
a b

)
= det(E) det(A)

det(EA) = ad− bc and
det(EA) = bc− ad

2 One row is multiplied det(EA) = α det(A) det(EA) = det(E) det(A)
by a nonzero number det(E) = det(EI) = α det(I) = α

3 Adding a multiple of one row det(E) = I det(EA) = det(A)
to another row. Expanding along jth row: det(EA) = det(E) det(A)

det(EA) = (aj1 + cai1)Ai1+
. . .+ (ajn + cain)Ajn

det(EA) = det(A) + c · 0

det(EA) = det(E) det(A)


det(E) = −1

det(E) = α 6= 0

det(E) = 1

Examples:

Vandermonde matrices:

v3 =

(
1 a a2

1 b b2

1 c c2

)
where a 6= b 6= c

det

(
1 a a2

1 b b2

1 c c2

)
= det

(
b−a b2−a2
c−ac c2−a2

)
= (b− a)(c− a) det

(
1 b+a
1 c+a

)
= (b− a)(c− a)(c− b) = (a− b)(b− c)(c− a)
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Lecture 5

Singularity, row operations:

A square matrix A is singular iff det(A) = 0

Proof:

Proof by contradiction:
B nonsingular⇔ U = EkEl−1 . . . E1B
WhereU is in Reduced row echelon form andEi all elementary matrices.
⇔ det(U) = det(EkEk−1 . . . E1B)⇔ det(U) = det(Ek) det(Ek−1) . . . det(E1) det(B)
We know that det(Ei) 6= 0 so then det(B) 6= 0 iff det(U) 6= 0
⇔ U in reduced row echelon form, so det(U) 6= 0 iffU = I
⇔ det(A) 6= 0 iffB row equivalent to I ⇔ det(B) 6= 0 iffB is nonsingular.
Proven by contradiction.

observation:

Every square matrix can be transformed to row echelon form, that is:
R = EkEk−1 . . . E1A
WhereR is in row echelon form, andEi’s are all elementary matrices.
If the last row ofR is zero, then det(A) = 0
Otherwise,A is nonsingular and:
det(A) = [det(Ek) det(Ek−1) . . . det(E1)]−1

Row operations vs cofactor expansion:

Row operation Cofactor expansion
n addition multiplication addition mulitiplication
2 1 3 1 2
3 5 10 5 9
4 14 23 23 40
5 30 44 119 205
10 285 339 3628799 6235300

determinant of a product:

A&B bothn× nmatrices? Then det(AB) = det(A) det(B)

Proof:

Case 1:B is singular:
Bx = 0 has nontrivial solution, soABx = 0 has a nontrivial solution, soAB is singular,so:
0 = det(AB) = det(A) det(B) = 0
Case 2:B is nonsingular:
B row equivalent to I soB is product of elementary matrices, soAB is aA times a product of
elementary matrices. We know that det(ME) = det(M) det(E)
det(AB) = det(A) det(EkEk−1 . . . E1) = det(A) det(B)
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Adjoint of a matrix

LetA be an× n matrix. Its adjoint is defined by (whereAij = (−1)i+j det(Mij))

adjA =

 A11 A21 ... An1

A12 A22 ... An2

...
...

...
A1n A2n ... Ann


fact:

LetA be an× n matrix then:

ai1Aj1 + ai2Aj2 + . . .+ ainAjn =

{
det(A) if i = j

0 if i 6= j

observation:

(A(adjA))ij = ai1Aj1 + ai2Aj2 + . . .+ ainAjn
A(adjA) = det(A)I
A = ( 1

det(A)adjA) = I if det(A) 6= 0

A−1 = 1
det(A)adj(A) if det(A) 6= 0

Example:

A =
(

2 1 0
3 2 1
1 2 3

)
adjA =

 | 2 1
2 3 | −| 1 0

2 3 | | 1 0
2 1 |

−| 3 1
1 3 | | 2 0

1 3 | −
∣∣∣−2 0

3 1

∣∣∣
| 3 2
1 2 | −| 2 1

1 2 | | 2 1
3 2 |

 =
(

4 −3 1
−8 6 −2
4 −3 1

)

Cramer’s rule:

LetA ∈ Rn×n and b ∈ Rn. LetAi be the matrix obtained fromA by replacing the ith column by b.

If x is the unique solution ofAx = b , thenxi = det(Ai)
det(A) for i = 1, 2, . . . , n

Proof:

Ax = b→ x = A−1b = 1
det(A) (adjA)b

xi = b1A1i+b2A2i+...+bnAni

det(A) = det(Ai)
det(A)

Example:

A = ( a11 a12a21 a22 ) and b =
(
b1
b2

)
whereAx = b

If a11a22 − a12a21 6= 0 then:

x1 = det{A1}
det(A) andx2 = det(A2)

det(A)

A1 =
(
b1 a12
b2 a22

)
, A2 =

(
a11 b1
a21 b2

)
x1 = b1a22−b2a12

a11aa22=a12a21
andx2 = b2a11−b1a21

a11aa22=a12a21
As we observed for Cramer’s rule, requires computation ofn+ 1n× n determinants.
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Lecture 6

Vector spaces:

V set, F set of scalers(R orC)⊕
: V × V → V and

⊙
: F× V → V respectively addition and scaler multiplication operators:

x,y ∈ V ⇒ x
⊕

y ∈ V andα ∈ F,x ∈ V ⇒ α
⊙

x ∈ V

We say that (V,F,
⊙
,
⊕

) form a vector space if the following axioms are satisfied.

Axiom Proof

1 x
⊕

y = y
⊕

x for all x,y ∈ V

x = 1
⊙

x
x = (1 + 0)

⊙
x

x = (1
⊙

x)
⊕

(0
⊙

x)
x = x

⊕
(o
⊙

x)
−x
⊕

x = −x
⊕

(x
⊕

(0
⊙

x))
−x
⊕

x = (−x
⊕

x)
⊕

(0
⊙

x)
x
⊕
−x = (x

⊕
−x)

⊕
(0
⊙

x)
0 = 0

⊕
(0
⊙

x)
0 = (0

⊙
x)

2 (x
⊕

y)
⊕

z = x
⊕

(y
⊕

z) for all x,y, z ∈ V

−x = −x
⊕

0
−x = −x

⊕
(x
⊕

y)
−x = (−x

⊕
x)
⊕

y
−x = (x

⊕
−x)

⊕
y

−x = 0
⊕

y
−x = y

⊕
0

−x = y
3 There exists 0 ∈ V s.t. x

⊕
0 = x for all x ∈ V

4 For each x ∈ V there exists−x ∈ V s.t. x
⊕
−x = 0

5 α
⊙

(x
⊕

y) = (α
⊙

x)
⊕

(α
⊙

y)
for allα ∈ F and x,y ∈ V

6 (α+ β)
⊙

x = (α
⊙

x)
⊕

(β
⊙

x)
for allα, β ∈ F and x ∈ V

7 (α · β)
⊙

x = α
⊙

(β
⊙

x)
for allα, β ∈ F and x ∈ V

8 1
⊙

x = x for all x ∈ V

0 = 0
⊙

x
0 = (1 + (−1))

⊙
x

0 = (1
⊙

x)
⊕

((−1)
⊙

x)
0 = x

⊕
((−1)

⊙
x)

(−1)
⊙

x = −x

x ∈ V then: 0
⊙

x = 0 x
⊕
−x = 0⇒ −x = −x (−1)

⊙
x = −x
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Examples:

1:
Letx, y ∈ Rn andα ∈ R Definex

⊕
y := x+ y andα

⊙
x := αx

2:
LetA,B ∈ Rn×n andα ∈ R. DefineA

⊕
B := A+B andα

⊙
A := αA

3:
Let a, b ∈ R with a < b. DefineC[a, b] := {f : [a, b]→ R|f is continuous}
Let f, g ∈ C[a, b] andα ∈ R
(f
⊕
g)(x) := f(x) + g(x) for allx ∈ [a, b]

(α
⊙
f)(x) := αf(x) for allx ∈ [a, b]

4:
Letn be a positive integer. DefinePn = {p|p is a polynomial of degree less thann}
Let p, q ∈ Pn andα ∈ R
(p
⊕
q)(x) := p(x) + q(x)

(α
⊙
p)(x) := αp(x)

Special types of vector spaces:

C[a, b]: Set all real-valued functions that are defined and continuous on [a, b].
Pn is the set of all polynomials of degree less thann

The nullspace of a matrix

N(A) = {x ∈ Rn|Ax = 0}
If the linear systemAx = b is consistent and x0 particular solution, then the vector y will also be a
solution iff y = x0 + z where z ∈ N(A)

Supspace

From now one, we write x + y andαx meaning x
⊕

y andα
⊙

x respectively.

LetS be a subset of vector spaceV . We say thatS is a subspace ofV if:
(-)S is nonempty.
(-) x ∈ S and ,α ∈ F⇒ αx ∈ S
(-) x,y ∈ S ⇒ x + y ∈ S
Trivial subspaces {0} andV are subspaces ofV
All other subspaces ofV are refereed to as proper subspaces.
We refer to {0} as the zero subspace.
IfS is a subspace, then 0 ∈ S
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Example:

1:
LetS = {

(
x1
x2
x3

)
∈ R3|x1 = x2}(

0
0
0

)
∈ S ⇒ S is nonempty.

Letx ∈ S. Then there are real numbers a and b s.t. x =
(
a
a
b

)
.

Let x =
(
a
a
b

)
∈ S andα ∈ R. Then,αx = α

(
a
a
b

)
=
(
αa
αa
αb

)
∈ S

Let x =
(
a
a
b

)
∈ S and y =

(
c
c
d

)
∈ S. Then x + y =

(
a
a
b

)
+
(
c
c
d

)
=
( a+c
a+c
b+d

)
∈ S

2:
S = {A ∈ R2×2|a12 = −a21}
( 0 0
0 0 ) ∈ S ⇒ S is nonempty.

LetA ∈ S then there are real numbers a, b, c s.t.A =

(
a b
−b c

)
LetA =

(
a b
−b c

)
∈ S andα ∈ R then αA = α

(
a b
−b c

)
=
(
αa αb
−αb αc

)
∈ S

LetA =
(
a b
−b c

)
∈ S andB =

(
d e
−e f

)
∈ S then:A+B =

(
a b
−b c

)
+
(
d e
−e f

)
=
(
a+d b+e
−b−e c+f

)
∈ S

3: S = {p ∈ Pn|p(1) = 0} andn > 0
p(x) = x− 1 ∈ S ⇒ S is nonempty.
Let p ∈ S andα ∈ R ,then (αp)(1) = αp(1) = 0⇒ αp ∈ S
Let p, q ∈ S then
(p+ q)(1) = p(1) + q(1) = 0⇒ p+ q ∈ S
4:
LetS ⊆ C[a, b] be the set of all functions that have a continuous derivative on [a, b]
f(x) = 1 for allx ∈ [a, b]⇒ f ∈ S ⇒ S is nonempty.
Let f ∈ S andα ∈ R then: (αf)′ = αf ′ = αf ∈ S
Let f ∈ S and g ∈ S then: (f + g)′ = f ′ + g′ ⇒ f + g ∈ S
5:
S = {f ∈ C[−1, 1]|f(−x) = −f(x) for allx ∈ [−1, 1]}
f(x) = 0 for allx ∈ [a, b]⇒ f ∈ S ⇒ S is nonempty.
Let f ∈ S andα ∈ R then:
(αf)(−x) = αf(−x) = −αf(x) = −(αf)(x) for allx ∈ [−1, 1]⇒ αf ∈ S.
Let f ∈ S and g ∈ S then:
(f + g)(−x) = f(−x) + g(−x) = −f(x)− g(x) = −(f + g)(x) for allx ∈ [−1, 1]⇒ f + g ∈ S

6: NOT
S := {x ∈ R2|x2 = x21}
0 ∈ S ⇒ S is nonempty.
Let ( 1

1 ) ∈ S and 2 ∈ R but
2 ( 1

1 ) = ( 2
2 ) 6∈ S

Let ( 1
1 ) ∈ S and ( 2

4 ) ∈ S, but:
( 1
1 ) + ( 2

4 ) = ( 3
5 ) 6∈ S
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7:
LetA ∈ Rm×n define:N(A) := {x ∈ Rn|Ax = 0}
0 ∈ N(A)⇒ N(A) is nonempty.
Let x ∈ N(A) andα ∈ R then: A(αx) = αAx = 0⇒ αx ∈ N(A)
Let x ∈ N(A) and y ∈ N(A). then:A(x + y) = Ax +Ay = 0→ x + y ∈ N(A)

8:
LetA = ( 1 1 1 0

2 1 0 1 ). To determineN(A) we have to solveAx = 0. Using Gauss-Jordan elimination,
we get:(

1 1 1 0
∣∣ 0

2 1 0 1
∣∣ 0
)
⇒ (2) = (2)− 2(1)→

(
1 1 1 0

∣∣ 0
0 −1 −2 1

∣∣ 0
)
⇒ (2) = −(2)⇒

(
1 1 1 0

∣∣ 0
0 1 2 −1

∣∣ 0
)
⇒

(1) = (1)− (2)⇒
(

1 0 −1 1
∣∣ 0

0 1 2 −1
∣∣ 0
)

x1 = x3 − x4 andx2 = −2x3 + x4

SoN(A) = {a
(

1
−2
1
0

)
+ b

(−1
1
0
1

)
|a, b ∈ R}
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Lecture 7

Span:

Linear combination:
v1, . . . ,vn ∈ V whereV , vector space,α1, . . . , αn ∈ F thenα1v1+ . . .+αnvn the linear combination.
Span of vectors:
Set of all linear combinations of the given vectors v1, . . . ,vn
Denoted by span(v1, . . . ,vn) or span(v1, . . . ,vn) = {αv1 + . . .+ anvn|α1, . . . , αn ∈ F}
In these cases:
(-) span{v1, . . . ,vn} spanned by v1, . . . ,vn
Or {v1, . . . ,vn} spanning set forV we say v1, . . . ,vn spanV

Example:

N(A) = {a
(

1
−2
1
0

)
+ b

(−1
1
0
1

)
|a, b ∈ R} =span(

(
1
−2
1
0

)
,

(−1
1
0
1

)
)

Theorem:

LetV be a vector space v1, . . .vn ∈ V , the span(v1, . . .vn) is a subspace.

Proof:

(-) By choosing α1 = . . . = αn = 0 we get 0 ∈span(v1, . . . ,vn)
⇒ span(v1, . . . ,vn) 6= ∅

(-) Letβ a scaler and v ∈ span(v1, . . .vn)
(-) v = α1v1 + . . .+ αnvn for some scalersα1, α2, . . . , αn
(-)βv = βα1v1 + . . .+ βαnvn ∈ span(v1, . . .vn)

(-) Let v ∈ span(v1, . . . ,vn) andw ∈ span(w1, . . . ,vn)
(-) v = α1v1 + . . .+ αnvn ∈ span(v1, . . . ,vn)
(-) w = β1v1 + . . .+ βnvn ∈ span(v1, . . . ,vn)
(-) v + w = (α1 + β1)v1 + . . .+ (αn + βn)vn ∈ span(v1, . . . ,vn)

Definition:

The set {v1,v2, . . . ,vn} is a spanning set forV if every vector ofV can be written as a linear
combination of the vectors v1,v2, . . . ,vn
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example:

1:
The set {

(
1
0
0

)
,
(

1
1
0

)
,
(

1
1
1

)
} is a spanning set forR3(

a
b
c

)
= α1

(
1
0
0

)
+ α2

(
1
1
0

)
+ α3

(
1
1
1

)
⇒ α1 + α2 + α3 = a, α2 + α3 = b, α3 = c

α3 = c, α2 = b− c, α1 = a− b
2:
The set {

(
1
0
1

)
,
(

0
1
0

)
} is NOT a spanning set forR3:(

a
b
c

)
= α1

(
1
0
1

)
+ α2

(
0
1
0

)
⇒ α1 = a, α2 = b, α1 = c

3:
The set {1− x2, x+ 2, x2} is a spanning setP3

P3 the set of polynomials withn < 3
ax2 + bx+ c ∈ P3

ax2 + bx+ c = α1(1− x2) + α2(x+ 2) + α3x
2

= (α3 − α1)x2 + α2x+ (α1 + 2α2)
So: a = α3 − α1,b = α2 and c = α1 + α2

⇒ α1, α2&α3 in terms of a, b, c⇒ spanning set.

Theorem:

Let v1, . . . ,vn belong to a vector spaceV
(1) If v1, . . . ,vn spanV and one of them can be written as a linear combination of the othern− 1
vectors, then thosen− 1 vectors spanV
(2) one of the vectors v1, . . . ,vn is a linear combination of the othern − 1 vectors iff there exist
scalers c1, c2, . . . , cn not all zero s.t. c1v1 + . . .+ cnvn = 0

Proof:

(1) Suppose vn linear combination of v1, . . . ,vn−1 and x ∈ V then:
vn = β1v1 + . . .+ βn−1vn−1
x = α1v1 + . . .+ αnvn
x = α1v1 + . . .+ αn(β1v1 + . . .+ βn−1vn−1)
x = (α1 + αnβ1)v1 + . . .+ (αn−1 + αnβn−1)vn−1

(2)(a) Suppose vn linear combination of v1, . . . ,vn then:
vn = β1v1 + . . .+ βn−1vn−1 ⇒ β1v1 + . . .+ βn−1vn−1 − vn = 0
(b) c1v1 + . . .+ cnvn = 0 and cn 6= 0
vn = − 1

cn
(c1v1 + . . .+ cn−1vn−1)

Linear independence:

The vectors v1,v2, . . . ,vn in a vector spaceV are said to be
Linearly independent if c1v1 + c2v2 + . . .+ cnvn = 0 implies c1 = c2 = . . . = cn = 0
Linearly dependent if there exists scalers c1, c2, . . . cn , not all zero s.t. c1v1+c2v2+. . .+cnvn = 0
Let x1, . . . ,xn ben vectors inRn letX = ( x1 ... xn ) then these vectors x1, . . . ,xn linearly dependent
iffX is singular.
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Theorem:

Let f1, f2, . . . , fn functions inC(n−1)[a, b] and defineW [f1, f2, . . . , fn] on [a, b] by:

W [f1, f2, . . . , fn](x) =

∣∣∣∣∣∣∣∣∣
f1(x) f2(x) . . . fn(x)
f ′1(x) f ′2(x) . . . f ′n(x)

...
...

...

f
(n−1)
1 (x) f

(n−1)
2 (x) . . . f

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣
The functionW [f1, f2, . . . , fn](x) called Wronskian of f1, f2, . . . , fn

If there existsx0 ∈ [a, b] s.t.W [f1, f2, . . . , fn](x0) 6= 0 then f1, . . . , fn linearly independent.

Theorem:

Let x1,x2, . . . ,xn be vector inRn and letX = ( x1 x2 ... xn ). The vectors x1, . . . ,xn linearly depen-
dent iffX singular.

Proof:

c1x1 + . . . cnxn = 0⇔ ( x1 x2 ... xn )

 c1
c2
...
cn

 = 0⇔ X

 c1
c2
...
cn

 = 0

Example:

1:
The vectors {

(
1
2
3

)
,
(

3
1
2

)
} ∈ R3 are linearly independent:

c1

(
1
2
3

)
+ c2

(
3
1
2

)
=
(

0
0
0

)
⇒
(

1 3
2 1
3 2

)
( c1c2 ) =

(
0
0
0

)
⇒ c1 = 0, c2 = 0

2:
The vectors p1(x) = x2 − 2x + 3,p2(x) = 2x2 + x + 8 ,and p3(x) = x2 + 8x + 7 inP 3 are linearly
dependent:
c1(x2 − 2x+ 3) + c2(2x2 + x+ 8) + c3(x2 + 8x+ 7)− 0 · x2 + 0 · x+ 0
(c1 + 2c2 + c3)x2 + (−2c1 + c2 + 8c3)x+ (3c1 + 8c2 + 7c3) = 0 · x2 + 0 · x+ 0

⇒
(

1 2 1
−2 1 8
3 8 7

)(
c1
c2
c3

)
=
(

0
0
0

)
⇒ c1 = 3, c2 = −2, c3 = 1

Theorem:

Let v1,v2, . . . ,vn be vectors in vector spaceV . Every vector in span(v1,v2, . . . ,vn) can be written
uniquely as a linear combination of v1,v2, . . . ,vn iff v1,v2, . . . ,vn are linearly independent.

Proof:

Suppose that v1, . . . ,vn lin. independent, and letx ∈span(v1, . . . ,vn)
So x = α1v + . . .+ αnvn = β1v1 + . . .+ βnvn
⇒ (α1 − β1)v1 + . . .+ (αn − βn)vn = 0
v1, . . . ,vn lin. independent⇒ α1 = βi for all 1 ≤ i ≤ n
⇒unique combination.
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Basis and dimension:

The vectors v1,v2, . . . ,vn form a basis for a vector spaceV if:
(1) v1,v2, . . . ,vn are linearly independent.
(2) v1,v2, . . . ,vn spanV

Example:

1:
The set {e1, e2, e3} where e1 =

(
1
0
0

)
,e2 =

(
0
1
0

)
,e1 =

(
0
0
1

)
, is a basis forR3. There are many other

basis. For instance, the following are bases forR3

{
(

1
0
0

)
,
(

1
1
0

)
,
(

1
1
1

)
} and {

(
1
0
2

)
,
(

3
4
0

)
,
(

5
6
9

)
}

2:
The set {E11, E12, E21, E22} whereE11 = ( 1 0

0 0 ) , E12 = ( 0 1
0 0 ) , E21 = ( 0 0

1 0 ) , E22 = ( 0 0
0 1 ) is a basis

forR2×2

Theorem:

Linearly dependent:
let {v1, . . . ,vn} be a spanning set for a vector spaceV andm be a positive integer withm > n.
then any collection ofm vectors inV is linearly dependent.
Two basis:
If Both {v1, . . . ,vn} and {u1, . . . ,un} bases for a vector spaceV thenn = m

Proof

Linearly dependent.
Letu1, u2, . . . , um bem vectors inV wherem > n since {v1, v2, . . . , vn} is a spanning sat we have:
u1 = a11v1 + . . .+ a1nvn
u1 = a21v1 + a22v2 + . . .+ a2nvn
...
um = am1v1 + . . .+ amnvn

0 = c1u1 + . . .+ cmum = (
m∑
i=1

ailci)v1 + (
m∑
i=1

ailci)vn

homogeneusm× n lin. system, with ci unknowns:
m∑
i=1

aijci = 0 ,j = 1, 2, . . . , n

Sincem > n there exists scalers c1, c2, . . . , cn such that: c1u1 + c2u2 + . . .+ cmum = 0
If both {v1,v2, . . . ,vn} and {u1,u2, . . . ,um} are bases for a vector spaceV , thenn = m
The set {v1,v2, . . . ,vn} is a spanning set and vectors u1,u2, . . . ,um are linearly independent, As
such Thm (4.45) implies thatm ≤ n same reasoning givesn ≤ m som ≤ n

Definition:

V vector space.
(-) basisn vecotrs⇒ dim(V ) = n
(-) SubspaceS = {0} ofV dim(S) = 0
(-)V finite dimensional⇒finite set of vectors spansV . Otherwise infinite dimensional.
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Lecture 8

Basis and dimension:

LetV be a vector space of dimensionn > 0 then:
(1) any set ofn vectors
(a) spansV are lin. independent.
(b) that are lin. independent spansV
(2) when #vectors < n cannot spanV
(3) #vectors < n can be completed to form basis forV

Definition:

V vector space andE = (v1, . . . ,vn) ordered basis forV
x ∈ V and c1, . . . , cn scalers then: x = c1v1 + . . .+ cnvn

So each x unique vector:Coordinate vector: c =

 c1
c2
...
cn

 ∈ Rn

Coordinates of x relative toE: c1, . . . , cn

Example:

In a certain town, 30% of the married women get divorced each year and 20% of the single womeng
et married each year. There are 8000 married women and 2000 single women. Assume that the total
populaition remains constant. How many married women and signle women will be aftern years
Letmk denote the number of married women year k and sk the number of single women in year k(mk+1
sk+1

)
=
(
0.7mk+0.2sk
0.3mk+0.8sk

)
= ( 0.7 0.2

0.3 0.8 ) (mk
sk ) (m0

s0 )

(m1
s1 ) = ( 6000

4000 )
When we go further we will see that:
(mn
sn ) =

(
0,7 0.2
0.3 0.8

)n
(m0
s0 )

Note that:
( 0.7 0.2
0.3 0.8 ) ( 2

3 ) = ( 2
3 ) and ( 0.7 0.2

0.3 0.8 )
(−1

1

)
= 0.5

(−1
1

)
This means that:
( 0.7 0.2
0.3 0.8 )

n
( 2
3 ) = ( 2

3 ) and ( 0.7 0.2
0.3 0.8 )

n (−1
1

)
= 0.5n

(−1
1

)
So note that:
(m0
s0 ) = ( 8000

2000 ) = 8000 ( 1
0 ) + 2000 ( 0

1 ) = 2000 ( 2
3 )− 4000

(−1
1

)
As such we obtain:
(mn
sn ) = 2000 ( 2

3 )− 4000 · (0.5)n
(−1

1

)
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Change of basis:

E = (v1,v2, . . . ,vn) F = (w1,w2, . . . ,wn)
x = c1v1 + c2v2 + . . .+ cnvn x = d1w1 + d2w2 + . . .+ dnwn

c = [x]E d = [x]F
v1 = t11w1 + t21w2 + . . .+ tn1wn

v2 = t12w1 + t22w2 + . . .+ tn2wn

...
vn = t1nw1 + t2nw2 + . . .+ tnnwn

So we can say:
x = c1v1 + c2v2 + . . .+ cnvn

x = [
n∑
j=1

t1jcj ]w1 + [
n∑
j=1

t2jcj ]w2 + . . .+ [
n∑
j=1

tnjcj ]qn

⇒ di =
n∑
j=1

tijcj ⇒

 d1
d2
...
dn

 =

 t11 t12 ... t1n
t21 t22 ... t2n
...

...
...

tn1 tn2 ... tnn

 c1
c2
...
cn


d = Tc andT is called the transition matrix.

Example:

1:
LetE = (v1,v2,v3) = (

[
1
1
1

]
,
[
2
3
2

]
,
[
1
5
4

]
) andF = (w1,w2,w3) = (

[
1
1
0

]
,
[
1
2
0

]
,
[
1
2
1

]
)

v1 = t11w1 + t21w2 + t31w3 ⇒
[
1
1
1

]
= 1 ·

[
1
1
0

]
− 1 ·

[
1
2
0

]
+ 1 ·

[
1
2
1

]
v2 = t12w1 + t22w2 + t32w3 ⇒

[
2
3
2

]
= 1 ·

[
1
1
0

]
− 1 ·

[
1
2
0

]
+ 2 ·

[
1
2
1

]
v3 = t13w1 + t23w2 + t33w3 ⇒

[
1
5
3

]
= −3 ·

[
1
1
0

]
0 ·
[
1
2
0

]
+ 4 ·

[
1
2
1

]
SoT =

[
1 1 −3
−1 1 0
1 2 4

]
2:
LetE = (v1,v2,v3) = (1, 2x, 4x2 − 2) andF = (w1,w2,w3) = (1, x, x2)

v1 = t11w1 + t21w2 + t31w3 ⇒ 1 = 1 · 1 + 0cdotx+ 0 · x2

v2 = t12w1 + t22w2 + t32w3 ⇒ 2x = 0 · 1 + 2 · x+ 0 · x2

v3 = t13w1 + t23w2 + t33w3 ⇒ 4x2 − 2 = −2 · 1 + 0 · x+ 4 · x2

SoT =
[
1 0 −2
0 2 0
0 0 4

]
⇒ d = [p(x)]F = T [p(x)]E = Tc

p(x) = 1 + 4x+ 8x2 ⇒ d =
(

1
4
8

)
and c = T−1d =

(
1 0 0.5
0 0.5 0
0 0 0.25

)(
1
4
8

)
p(x) = 1 + 4x+ 8x2 = 5 · 1 + 2 · 2x+ 2 · (4x2 − 2)
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Row and column space:

LetA ∈ Rm×n. Row space ofA the subspace ofR1×n spanned by the rows ofA
Column space ofA the subspace ofRm×1 spanned by the columns ofA

Example:

LetA = [ 1 0 0
0 1 2 ]

The row space ofA consists of row vectors of the form:
α [ 1 0 0 ] + β [ 0 1 2 ] = [ α β 2α ]⇒rowspace(A) =span(( 1 0 0 ) , ( 0 1 2 ))

Whereas the column space ofA consists of column vectors of the form:
α [ 10 ] + β [ 01 ] + γ [ 02 ] = [ α

β+2γ ]⇒colspace(A) =span([ 10 ] , [ 01 ])

row equivalent matrices and proof:

Two row equivalent matrices have the same row space.
Proof:
B = AEkEk−1 . . . E1 therefore rowspace(A) ⊆rowspace(B)
A = BElEl−1 . . . E1 therefore rowspace(B) ⊆rowspace(A)
So rowspace(A) =rowspace(B)

Rank:

Rank of matrixA(rank(A)) =dimension row spaceA
determine rankA? firstA in row echelon form.
nonzero rows echelon form=basis row space, number nonzero rows=rank.

(1) A linear systemAx = b is consistent iff b is a linear combination of the columns ofA
(2) A linear systemAx = b is consistent iff b is in the column space ofA

Proof:

SupposeAx = b is consistent, then ∃x =

 x1
x2

...
xn

 s.t.A ·

 x1
x2

...
xn

⇒ A = ( a1 a2 ... an )

givenx1a1 + x2a2 + . . .+ xnan = b⇒ b lim. com. of columns ofA

b is a lin. col. of col. of A says: b = x1a1 + x2a2 + . . .+ xnan
Wherex1, x2, . . . , xn are scalers andA = ( a1 a2 ... an ), then:Ax = b
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Theorem:

LetA ∈ Rm×n, then:
(1) The linear systemAx = b is consistent for every b ∈ Rm iff the column vectors ofA spanRm
(2) The linear systemAx = b has at most one solution for every b ∈ Rm iff column vectors ofA
independent.

Proof

2:
Ax = f at most 1 solution for every b ∈ Rm ⇒ ax = 0 at most one solution⇒ lin. independent.
⇒ Ax = 0 trivial solution.
Suppose x1&x2 solutionsAx1 =
⇒ A(x1 − x2) = b− b = 0⇒ x1 = x2

Definition and theorems:

Dimension of the null space ofA is called the nullity ofA ; null(A)
Thm:A ∈ Rm×n then rank(A)+null(A) = n

Proof

IfA ∈ Rm×n, then rank(A)+null(A) = n
(-) LetU be a row reduced echelon form ofA
(-) Ax = 0 iffUx = 0
(-) If rank(A) = r thenU has r nonzero rows.
(-) Therefore, there are r lead variables andn− r free variables.
(-) The dimension of the nullspace ofA must ben− r

Theorem:

(1) Ann× nmatrixA nonsingular iff column vectorsA form basisRn
(2) For every matrix, the dimension of the row space and that of the column space are equal.

Proof:

(-) LetA ∈ Rm×n,rank(A) = r, andU be a row echelon form ofA
(-) U has r leading 1’s. and its columns corresponding to leading 1’s are lin. independent.
(-) The column spaces ofA andU are not the same, in general.
(-) Let Û ∈ Rm×r be the matrix obtained formU by deleting all columns corresponding to free
variables
(-) Let Â ∈ Rm×r be the matrix obtained fromA by deleting the same columns.
(-) Âx = 0 iff Ûx = 0
(-) Since columns Û linearly independent: Ûx = 0⇒ x = 0 Therefore: Âx = 0⇒ x = 0
(-) As such the columns are linearly independent.
(-)dim(colspace(A)) ≥dim(colspace(A)) ≥ r = dim(rowspace(A))
(-) dim(rowspace(A))=dim(colspace(AT )) ≥dim(rowspace(AT )) =dim(colspace(A))
(-) dim(colspace(A)) =dim(rowspace(A))
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Lecture 9

Linear transformation:

A mappingL from a vector spaceV into a vector spaceW is said to be a linear transformation if:
L(αx + βy) = αL(x) + βL(y) for all vectorsx, y ∈ L ∈ V and scalersα, β
where the leftpart is ofV the right part ofW
Terminology:
(1)L : V →W a mappingL from a vector spaceV into a vector spaceW
(2)L : V → V ⇒ L is an operator.

Example:

1:
The operatorL : R2 → R2 given byL(v) =

[−v2
−v1
]

for v = [ v1v2 ] is linear.

L(αx + βy) = L(α [ x1
x2

] + β [ y1y2 ]) = L(
[
αx1+βy1
αx2+βy2

]
) =

[
−αx2−βy2
αx1+βy1

]
L(αx + βy) = α

[−x2
x1

]
+ β

[−y2
y1

]
= αL(x) + βL(y)

2:

L : C[a, b]→ R given byL(f) =
b∫
a

f(x)dx linear transformation:

L(αf + βg) =
b∫
a

(αf + βg)(x)dx = α
b∫
a

f(x)dx+ β
b∫
a

g(x)dx = αL(f) + βL(g)

3:
D : C1[a, b]→ C[a, b] given byD(f) = f ′ linear transformation.

C1[a, b] = {f : [a, b]→ R|f ′ ∈ C[a, b]}
D(αf + βg) = (αf + βg)′ = αf ′ + βg′ = αD(f) + βD(g)
4:
The mappingL : P4 → P4 given byL(p) = p(3)x3 + p(2)x2 + p(1)x+ p(0) is linear.

L(αp+ βq) = (α+ βq)(3) · x3 + (αp+ βq)(2) · x2 + (αp+ βq)(1) · x+ (αp+ βq)(0)
= α(p(3)x3 + p(2)x2 + p(1)x+ p(0)) + β(q(3)x3 + q(2)x2 + q(1)x+ q(0))
= αL(p) + βL(q)
5:
The operatorM : R2 → R2 given byM(v) =

(
v22
v21

)
f0r v = ( v1v2 ) is not linear.

M(2x) =
(

4x2
2

4x2
1

)
= 4M(x) 6= 2M(x)

6:
LetA ∈ Rm×n andLA : Rn → Rm given byLA(v) = Av for v ∈ Rn is linear:
LA(αx + βy) = A(αx + βy) = αAx + βAy
7:
LetA ∈ Rm×m, B ∈ Rn×n, andLA,B : Rm×n → Rm×n given by:
LA,B = AX +XB is linear:
LA,B(αX + βY ) = A(αX + βY ) + (αX + βY )B = α(AX + XB) + β(AY + Y B) = αLA,B(X) +
βLA,B(Y ) so linear.

term 1b 2020-2021 Page 29



Linear Algebra 1, University of Groningen H.M. Goossens

Theorem:

LetL : V →W linear transformation then:
(1)L(0V ) = 0w
(2)=L(−v) = −L(v) for all v ∈ V
(3) If v1, . . . ,vn vectors ofV andα2, αn are scalers then:
L(α1v1 + . . .+ αnvn) = α1L(v1) + . . .+ αnL(vn)

Proof:

(1)L(0v) = L(0 · v) = 0 · L(v) = 0w
(2) 0w = L(0v) = L(v( − v)) = L(v) + L(−v)⇒ L(−v) = −L(v)
(3) Repeated application of the definition.

Definition:

(1) LetL : V →W linear transformation. The kernel ofL defined by:
ker(L) : {v ∈ V |L(v = 0w}
(2) LetS be subspaceV , the Image ofS underLdenoted byL(S) defined by:
L(S) := {w ∈W |w = L(v) for some v ∈ S}
range(S) = L(V )
(3) IfL : V →W linear transformation and S subspace of V , then both kerL andL(S) subspaces.

Proof:

3:
(a) ker(L) subspace:
(-) 0v ∈ kerL 6= ∅
(-) Let v ∈ kerL andα be a scaler:
(-)L(αv) = αL(v) = α0w = 0q
⇒ αv ∈ kerL
(b) Let v1,v2 ∈ kerL
(-)L(v1 + v2) = 0w ⇒ v1 + v2 ∈ kerL
(c)L(S) subspace:
(-) 0w = L(0v) ∈ L(S) 6= ∅
(-) Letw ∈ L(s) andα scaler:
aw = αL(v) = L(αv)⇒ αw ∈ L(S)
(-) Let w1,w2 ∈ L(S)
w1 + w2 = L(v1 + v2)⇒ w1 + w2 ∈ L(S)
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Example:

1:
Dk : Ck[a, b] → C[a, b] given byDk(f) = f (k) and letS be supspace ofCk[a, b] spanned by the
functionsx 7→ eλx forλ > 0

kerDk = {f ∈ Ck[a, b]|Dk(f) = 0C[a,b]} = {f ∈ Ck[a, b]|f (k) = 0C[a,b]} = Pk

Dk(Pn) = {g ∈ C[a, b]|g = Dk(f) for some f ∈ Pn}wheren ≥ k
Dk(Pn) = {g ∈ C[a, b]|g = f (k) for some f ∈ Pn} = Pn−k

Dk(S) = {g ∈ C[a, b]|g = Dk(f) for some f ∈ S} = {g ∈ C[a, b]|g = f (k) for some f ∈ S} = S
2:
LA,B : R2×2 → R2×2 given byLA,B(X) = AX +XB whereA = B = [ 0 1

1 0 ]

KerLA,B = {X ∈ R2×2|LA,B(X) = 0R2×2} = {X ∈ R2×2|AX +XB = 0R2×2}
{
[
a b
c d

]
| [ 0 1

1 0 ]
[
a b
c d

]
+
[
a b
c d

]
[ 0 1
1 0 ] = [ 0 0

0 0 ]}
= {
[
a b
c d

]
|
[
c d
a b

]
+
[
b a
d c

]
= [ 0 0

0 0 ]} = {
[
a b
−b −a

]
|a, b ∈ R}

LA,B(R2×2) = {Y ∈ R2×2|Y = LA,B(X) for someX ∈ R2×2}
LA,B(R2×2) = {Y ∈ R2×2|Y = AX + ZB for someX ∈ R2×2}
= {
[
a b
c d

]
|
[
a b
c d

]
= [ 0 1

1 0 ]
[
e f
g h

]
+
[
e f
g h

] [
a b
c d

]
}

= {
[
a b
c d

]
|
[
a b
c d

]
=
[
g h
e f

]
+
[
f e
h g

]
} = {

[
a b
b a

]
|a, b ∈ R}
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Lecture 10

Matrix representations:

(1): IfL : Rn → Rm, there existsAm×n s.t.L(x) = Ax

(2)E = (v1, . . . ,vn) andF = (w1, . . . ,wn) ordered basis for vector spaceV&W
LetL : V →W be a lin. transformation.
Am×n defined by aj = [L(vj ]F for j = 1, . . . , n
Then [L(v)]F = A[v]E for all v ∈ V
The matrixA is called the matrix representation ofL relative to the basesE andF

IfA is the matrix representingL relative to the basesE andF and if:
x = [v]E and y = [w]F
ThenL maps v to w⇔ A maps x to y
We can make a schedule of this:

v ∈ V L−→ w ∈W
l l

x = [v]E ∈ Rn A−→ y = [w]F ∈ Rm

Proof:

v = x1v1 + . . .+ xnvn

L(vj) + a1jw1 + . . .+ amjwm =
m∑
i=1

aijwi

L(v) = L(x1v1 + . . .+ xnvn) =
n∑
j=1

xjL(vj)

L(v) =
n∑
j=1

xj(
m∑
i=1

aijwi) =
m∑
i=1

(
n∑
j=1

aijxj)wi

[L(v)]F =


n∑
j=1

a1jxj

...
n∑
j=1

amjxj

 =

a11 . . . a1n
...

...
am1 . . . amn


x1...
xn

AvE
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Example:

1:
We use the following schedule:

g
D−→ h

l l
v ∈ R2 A−→ [ ab ]

h(x) = aeλx cos(ωx) + beλx sin(ωx)∫
h(x)dx = g(x)⇔ D(g) = h

V =span{eλx cos(ωx), eλx sin(ωx)}
D : V → V given byD(f) = f ′

E = F = (eλx cos(ωx), eλx sin(ωx))
D(eλx cos(ωx)) = λeλx cos(ωx)− ωeλx sin(ωx)
D(eλx sin(ωx)) = ωeulerλx cos(ωx) + λeλx sin(ωx)
So we can make the following transition matrix:
A =

[
λ ω
−ω λ

]
and from the schedule we knowAv = [ ab ] so: v = 1

λ2+ω2

[
aλ−bω
aω+bλ

]∫
aeλx cos(ωx) + beλx sin(ωx)dx = aλ−bω

λ2+ω2 e
λx cos(ωx) + aω+bλ

λ2+ω2 e
Pλx sin(ωx)

2:
The linear operatorL : P4 → P4 is given byL(p) = p(0) = p(1)x+ p(2)x2 + p(3)x3.
LetE = (1, x, x2, x3) andF = 1, 1,+x, x+ x2, x2 + x3. FindA

L(1) = 1 · 1 + 1 · x+ 1 · x2 + 1 · x3 = 0 · 1 + 1 · (1 + x) + 0 · (x+ x2) + 1(x2 + x3)
L(x) = 0 · 1 + 1 · x+ 2 · x2 + 3x3 = −2 · 1 + 2 · (1 + x)− 1(x+ x2) + 3 · (x2 + x3)
L(x2) = 0 · 1 + 1 · x+ 4 · x2 + 9 · x3 = −6 · 1 + 6 · (1 + x)− 5 · (x+ x2) + 9 · x2 + x3)
L(x3) = 0 · 1 + 1 · x+ 8 · x2 + 27 · x3 = −20 · 1 + 20(1 + x)− 19(x+ x2) + 27(x2 + x3)

SoA =

[
0 −2 −6 −20
1 2 6 20
0 1 −5 −19
1 3 9 27

]

Matrix representations w.r.t. two bases

LetL : V → V linear operator:E = (v1, . . . ,vn) andF = (w1, . . . ,wn) ordered bases vector spaceV .
S : transition matrix, basis changeF toE
IfA andB are matrices representingLw.r.tE andF respectively, thenB = S−1AS

Proof:

Definition:

LetA andB ben × n matrices. We say thatB is similar toA if there exists a nonsingular ma-
trixS such thatB = S−1AS
IfB similar toA thenA is similar toB
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Example:

Population dynamics:[mk+1
sk+1

]
= [ 0.7 0.2

0.3 0.8 ] [mk
sk ]

[mn
sn ] = Mn [m0

s0 ]
L(x) = M(x)
E = ([ 10 ] , [ 01 ]) andF = ([ 23 ]

[−1
1

]
)

[ 23 ] = 2 [ 10 ] + 3 [ 01 ][−1
1

]
= −1 [ 10 ] + 1 [ 01 ]

Where we can make the following transition matrix:
S =

[
2 −1
3 1

]
We also know that:
L([ 10 ]) = 0.7 [ 10 ] + 0.3 [ 01 ]
L([ 01 ] = 0.2 [ 10 ] + 0.8 [ 01 ]
Where we can make the following transition matrix:
A = [ 0.7 0.2

0.3 0.8 ]

We also know that:
L([ 23 ]) = 1 [ 23 ] + 0

[−1
1

]
L(
[−1

1

]
) = 0 [ 23 ] + 0.5

[−1
1

]
Where we can make the following transition matrix:
B = [ 1 0

0 0.5 ]

If we calculateSB = AS we will see that it is correct.
2:
The linear operatorL : P4 → P4 is given byL(p) = p(0) + p(1)x+ p(2)x2 + p(3)x3.
LetE = (1, x, x2, x3) andF (1, 1 + x, x+ x2, x2 + x3). FindA,B andS

1 = 1 · 1 + 0 · x+ 0 · x2 + 0 · x3
1 + x = 1 · 1 + 1 · x+ 0 · x2 + 0 · x3
x+ x2 = 0 · 1 + 1 · x+ 1 · x2 + 0 · x3
x2 + x3 = 0 · 1 + 0 · x+ 1 · x2 + 1 · x3

Which give us the matrix transition: S =

[
1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

]
L(1) = 1 · 1 + 1 · x+ 1 · x2 + 1 · x3
L(x) = 0 · 1 + 1 · x+ 2 · x2 + 3 · x3
L(x2) = 0 · 1 + 1 · x+ 4 · x2 + 9 · x3
L(x3) = 0 · 1 + 1 · x+ 8 · x2 + 27 · x3

Which give us the matrix transition:A =

[
1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27

]
L(1) = 1 · 1 + 1 · x+ 1 · x2 + 1 · x3 = 0 · 1 + 1 · (1 + x) + 0 · (x+ x2) + 1 · (x2 + x3)
L(x) = 0 · 1 + 1 · x+ 2 · x2 + 3 · x3 = −2 · 1 + 3 · (1 + x)− 1 · (x+ x2) + 4 · (x2 + x3)
L(x2) = 0 · 1 + 1 · x+ 4 · x2 + 9 · x3 = −8 · 1 + 8 · (1 + x)− 6 · (x+ x2) + 12 · (x2 + x3)
L(x3) = 0 · 1 + 1 · x+ 8 · x2 + 27 · x3 = −26 · 1 + 26 · (1 + x)− 24 · (x+ x2) + 36 · (x2 + x3)

Which give us the matrix transition:B =

[
0 −2 −8 −26
1 3 8 26
0 1 −6 −24
1 4 12 36

]
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Lecture 11:

Orthogonality:

Let x and y be two column vectors inRn. The product xTy is called the scaler product of x and y

So x =

(
x1

...
xn

)
and y =

( y1

...
yn

)
Then: xTy = x1y1 + . . .+ xnyn

Eucledian length of a vector x ∈ Rn defined by:
‖x‖ :=

√
xTx =

√
x21 + x22 + . . .+ x2n

Observation:

||x|| ≥ 0 for all x
||x|| = 0 iff x = 0

In particular: ||x|| =

{√
x21 + x22 ifx ∈ R2√
x21 + x22 + x23 ifx ∈ R3

The distance between two vectors, x,y ∈ Rn is defined as ‖ x− y ‖

Two vectors x,y ∈ Rn are said to be orthogonal if xTy = 0
We write x⊥y if x and y are orthogonal

Phytagorean law:

If x⊥y then:
‖x‖2 + ‖y‖2 = ‖x + y‖2
Where x and y ∈ Rn

Proof:

‖x + y‖2 = (x + y)T (x + y) = xTx + yTx + xTy + yTy = xTx + yTy = ‖x‖2 + ‖y‖

Angle between 2 vectors:

If x and y are 2 vectors inR2 orR3 and θ is the angel between them then:
xTy = ‖x‖‖y‖ cos θ

Proof:

Law of cosines we have:
‖y − x‖2 = ‖x‖2 + ‖y‖ − 2‖x‖‖y‖ cos θ
Thus we get:
2‖x‖‖y‖ cos θ = ‖x‖2 + ‖y‖2 − ‖y − x‖2
= ‖x‖2 + ‖y‖2 − (y − x)T (y − x)
= ‖x‖2 + ‖y‖2 − xTx + yTx + xTy − yTy = 2xTy
⇒ xTy = ‖x‖‖y‖ cos θ
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So we see that cos θ = xTy
‖x‖‖y‖

When both vectors are nonzero vectors.

Definition:

Scaler projection of x onto y:α = xTy
‖y‖

Vector projection of x onto y: p = αu = α 1
‖y‖y = xTy

yTy
y

Cauchy-Schwartz inequality:

Let x,y ∈ Rn then:∣∣xTy
∣∣ ≤ ‖x‖‖y‖

Observation:
= 1 ≤ xTy

‖x‖‖y‖ ≤ 1, because−1 ≤ cos θ ≤ 1

Proof:

If y = 0 then
∣∣xTy

∣∣ ≤ ‖x‖‖y‖ holds. If y 6= 0, define:λ = xTy
‖y‖2

Then we have:
0 ≤ ‖x− λy‖2
= (x− λy)T (x− λy)
= xTx− λxTy − λyTx + λ2yTy

= ‖x‖2 − 2 xTy
‖y‖2 xTy + ( xTy

‖y‖2 )2yTy

= ‖x‖2 − 2 (xTy)2

‖y‖2 + (xTy)2

‖y‖2

= ‖x‖2 − (xTy)2

‖y‖2

This implies that (xTy)2 ≤ ‖x‖2‖y‖2
Hence we get

∣∣xTy
∣∣ ≤ ‖x‖‖y‖

Notation:

IfP1&P2 points in 3-space, then the vector fromP1 toP2 by ~P1P2

Orthogonal subspaces:

Two subspacesX andY ofRn. orthogonal if xTy = 0 for every x ∈ X and y ∈ Y
We writeX⊥Y ifX andY orthogonal.

Orthogonal complement:

LetX be subspace ofRn. DefineX⊥ := {y ∈ Rn|xty = 0 for all x ∈ X}
The setX⊥ called orthogonal complement ofX

Observation:

(1)X⊥Y thenX ∩ Y {0}
(2)X⊥ is a subspace

term 1b 2020-2021 Page 36



Linear Algebra 1, University of Groningen H.M. Goossens

Proof observation:

(1)Let x ∈ X ∩ Y then ‖x‖2 = xTx = 0 so x = 0
(2) 0 ∈ X⊥ ⇒ X⊥ 6= ∅
Let y ∈ X⊥,andα a scaler.
Then for all x ∈ X:
xT (αy) = α(xTy) = α · 0 = 0⇒ αy ∈ X⊥
Let y1,y2 ∈ X⊥, then for all x ∈ X, we have:
xT (y1 + y2) = xTy1 + xTx2 = 0 + 0 = 0⇒ y1 + y2 ∈ X⊥

Fundamental subspaces:

(-) LetA ∈ Rm×n. The null space ofA and range ofA defined by:
N(A) := {x ∈ Rn|Ax = 0} andR(A) = {y ∈ Rm|y = Ax for some x ∈ Rn}

Theorem:

LetA ∈ Rm× n, thenN(A) = R(AT )⊥ andN(AT ) = R(A)⊥

Proof:

Prove thatN(A) ⊆ R(AT )⊥

⇒ x ∈ N(A)⇒ Ax = 0
⇒ xTAT z = 0,∀z ∈ Rm
⇒ xTy = 0,∀y ∈ R(AT )
⇒ x ∈ R(AT )⊥ ⇒ N(A) ⊆ R(AT )⊥

Prove thatR(AT )⊥ ⊆ N(A)
x ∈ R(AT )⊥ ⇒ xTy = 0,∀y ∈ R(AT )
⇒ xTAT z = 0 ,∀z ∈ Rm
⇒ Ax = 0
⇒ x ∈ N(A) ⇒ R(AT )⊥ ⊆ N(A)

BecauseR(AT )⊥ ⊆ N(A) andN(A) ⊆ R(AT )⊥, we can conclude thatR(AT )⊥ = N(A)

Subspaces vs. their orthogonal complements

IfS subspace ofRn then dimS+dimS⊥ = n. Moreover if {x1, . . . ,xr} is a basis forS and {xr+1, . . . ,xn}
is a basis forS⊥, then {x1, . . . ,xn} basis forRn

Proof:

IfS = {0}, thenS⊥ = Rn and dimS+DimS⊥ = 0 + n = n.
IfS 6= {0}, then let {x1, . . . ,xr} basis forS
DefineX = [ x1 x2 ... xr ]. ThenS = R(X) and that implies thatS⊥ = N(XT ). From rank-nullity
theorem, we have:
dimS+dimS⊥ =dimR(x)+dimN(XT ) =Rank(XT )+null(XT ) = r + n− r = n
In order to show {x1, . . . ,xn} basis forRn, enough to prove these vectors linearly independent.:
c1x1 + c2x2 + . . .+ cnxn = 0
Let y = c1x1 + . . .+ crxr and z = cr+1xr+1 + . . .+ cnxn. Then we have y + z = 0 and hece y = −z
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So y and z belongs toS ∩ S⊥ = {0}. HEnce:
c1x1 + . . .+ crxr = 0
cr+1xr+1 + . . .+ cnxn = 0
Therefore,c1 = . . . = cr = 0 = cr+1 = . . . = cn

Orthogonal subspaces:

LetU andV subspaces of vector spaceW if eachW can be wiitten uniquely as a sum of u + v
where u ∈ U and v ∈ V then we say thatW direct sum ofU andV written as:
W = U

⊕
V

Theorem:

IfS subspaceRn thenRn = S
⊕
S⊥

Proof:

The theorem at fundamental subspaces implies that ever x ∈ Rn, can be written as:
x = c1x + . . .+ crxr + cr+1xr+1 + . . .+ cnxn = u + v
where {x1, . . . ,xr} basis forS,and {xr+1, . . . ,xn} a basis forS⊥. LetS 3 u = c1x1+. . .+crxr and v =
cr+1xr+1 + . . .+ cnxn ∈ S⊥
For uniqueness, suppose x = w + z where w ∈ S and z ∈ S⊥ then we have: u + v = x = w + z ⇒
S 3 u−w = z− v ∈ S⊥.
SinceS ∩ S⊥ = {0}, we have u−w and z = v

Theorem:

IfS subspace ofRn , then (S⊥)⊥ = S

proof:

x ∈ S ⇒ x⊥y, for all y ∈ S⊥ ⇒ x ∈ (S⊥)⊥ ⇒ S ⊆ (S⊥)⊥

x ∈ (S⊥)⊥ ⇒ x = u + v, where u ∈ S and v ∈ S⊥
So v ∈ S⊥ ⇒ v⊥x, and v⊥u⇒ 0 = vTx = vT (u + v) = vTv = ‖v‖2
⇒ v = 0⇒ x = u ∈ S ⇒ (S⊥)⊥ ⊆ S
So thereforeS = (S⊥)⊥
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Lecture 12

A ∈ Rm×n andm > n and b ∈ Rm.
For each x ∈ Rn define residual: r(x) = Ax−
We want to find x̂ ∈ Rn such that ‖r(x̂)‖ ≤ ‖r(x‖For allx ∈ Rn.
So we want to minimize ‖r(x)‖ equivalently ‖rx‖2
Least square solution of the systemAx = b:A vector x̂ satisfying the inequality.

Towards a solution:

S subspaceRm, for every b ∈ Rm, unique p ofS closest to b so:
‖b− p‖ < ‖b− y‖where y 6= p in S
b ∈ S closest to b iff b− p ∈ S⊥
The vector p is said to the projection of b ontoS

Proof

S subspaceRm ⇒ Rm = S
⊕
S⊥

⇒ b = p + z where b ∈ Rm,p ∈ S&z ∈ S⊥
‖b− y‖2 = ‖(b− p) + (p− y)‖2
Since b− p = z ∈ S⊥ and p− y ∈ S:
‖b− y‖2 = ‖b− p‖2 + ‖p− y‖2
Due to Phytagorean law.Since y 6= p⇒ ‖p− y‖ > 0
As such we can conclude that ‖b− p‖ < ‖b− y‖

Solution:

Observation and theorems:

1:
OBS: If x̂ is a least square solution of the systemAx = b and p = Ax̂ ,then p is the vector inR(A)
that is the closest to b
THM: LetS subspace ofRm. For every b ∈ Rm, unique vector p ofS closest to b that is ‖b− p‖ <
‖b−y‖, for all y 6= p, inS. MOreover, a vector p ∈ S is closest to a given vector b iff b−p ∈ S⊥ 2:
OBS: TakeS = R(A)
A vector x̂ is a least square solution ofAx = b iff:
p = Ax̂ is the vector inR(A) that is the closest to b iff:
b− p = b−Ax̂ ∈ R(A)⊥ = N(AT ) iffAT (b−Ax̂) = 0
IffATAx̂ = ATb
THM:IfA ∈ Rm×n is of rankn, then the normal equations:
ATAx = ATb have a unique solution:
x̂ = (ATA)−1ATb

proof

Enough to prove thatATA nonsingular.
Let z vector s.t.ATAz = 0
Then we have 0 = zTATAz = ‖Az‖2 ⇒ Az = 0
Since rank(A) = n columns ofA linearly independent.⇒ z = 0⇒ ATA nonsingular.
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Example:

1:
Find the best line fitting to the points (0, 1), (1, 3), (2, 4) and (3, 4)

(
0 1
1 1
2 1
3 1

)
( ab ) =

(
1
3
4
4

)
So the left matrix is matrixA and the right matrix is the b vector.
When we do:ATA:(

0 1
1 1
2 1
3 1

)
( 0 1 2 3
1 1 1 1 ) ( 14 6

6 4 )

SoATA = ( 14 6
6 4 )

At te same way calculateAT b = ( 23
12 )

So now we want to calculate:
( 14 6

6 4 ) ( ab ) = ( 23
12 )

det
(
ATA

)
= 20

So (ATA)−1 = 1
20

(
4 −6
−6 14

)
So ( ab ) = 1

20

(
4 −6
−6 14

)
( 23
12 ) =

(
1

+ 3
2

)
So best line for a = 1 and b = + 3

2 So y = x+ 3
2
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Lecture 13

Eigen values and eigen vectors:

A square matrix.
Eigenvalue or characteristic value:(λ) exists x nonzero s.t.Ax = λx
Eigen vector or characteristic vector: x

Example:

[ 4 2
1 1 ] [ 21 ] = [ 63 ] = 3 · [ 21 ] and [ 4 2

1 1 ] [ 42 ] = [ 126 ] = 3 · [ 42 ]

observation

Following statements equivalent:
(-)λ eigenvalue ofA
(-) (λI −A)x = 0 has a nontrivial solution.
(-)N(λI −A) 6= {0}
(-) (λI −A) is singular
(-0 det(λI −A) = 0

The book saysA− λI instead ofλI −A but I am not sure or there is any difference.

Terminology:

N(λI −A) eigen space cooresponding toλwhereλ eigen valueA
characteristic polynomial: ρa(λ) = det(λIA)
IfA ∈ Rn×n, then ρA(λ) polynomial of degreen

complex eigenvalues of real matrices:

IfA is a square matrix, with real entries, then charecterisatic polynomial has real coefficients.
As such, all its nonreal eigenvalues occur in conjugate pairs.
Also the eigenvectors occurs in conjugate pairs:
Az = λz⇒ Az = Az = Az = λz = λz

term 1b 2020-2021 Page 41



Linear Algebra 1, University of Groningen H.M. Goossens

Example:

without using the observation we made:

A =
[
2 −3 1
1 −2 1
1 −3 2

]
. The characteristic polynomial ρA(λ) given by:

ρA(λ) = det(λI −A) =

∣∣∣∣ λ−2 3 −1
−1 λ+2 −1
−1 3 λ−2

∣∣∣∣ = λ(λ− 1)2

We want htat det(λI −A) = 0
Soλ(λ− 1)2 = 0⇒ lambda = 0 ∨ (λ− 1)2 = 0⇒ λ1 = 0 ∨ λ2,3 = 1
Because a polynomial of degreen hasn roots.
Eigen vector forλ1 = 0:
0 = (λ1I −A)x[−2 3 1
−1 2 −1
−1 3 −2

] [
x1
x2
x3

]
This leads to:

[
x1
x2
x3

]
= α

[
1
1
1

]
Eigen vector forλ2,3 = 1:
0 = (λ1I −A)x[−1 3 1
−1 3 −1
−1 3 −1

] [
x1
x2
x3

]
This leads to:

[
x1
x2
x3

]
= α

[
3
1
0

]
+ β

[−1
0
1

]
2:

A =
[

1 2
−2 1

]
The characteristic polonomial ρA(λ) given by:
ρA = det(λI −A) =

[
λ−1 −2
2 λ−1

]
= (λ− 1)2 + 4

λ1,2 = 1± 2i
λ1 = 1 + 2i
0 = (λ1I −A)x =

[
2i −2
2 2i

]
[ x1
x2

] this leads to [ x1
x2

] = α [ 1i ]
λ2 = 1− 2i
0 = (λ2I −A)x =

[−2i −2
2 −2i

]
[ x1
x2

]

This leads to [ x1
x2

] = α
[

1
−i
]

Product and sum of eigenvalues:

ρA(λ) = det(λI −A) =

∣∣∣∣∣∣∣∣∣
λ− a11 −a12 . . . −a1n
−a21 λ− a22 . . . −a2n

...
...

...
−an1 −an2 λ− ann

∣∣∣∣∣∣∣∣∣
= λn + ρn−1λ

n−1 + . . .+ ρ1λ+ ρ0
(λ− λ1)(λ− λ2) . . . (λ− λn)
λn − (λ1 + λ2 + . . .+ λn)λn−1 + . . .+ (−1)nλ1λ2 . . . λn

ρA(λ) = (λ− a11)(λ− a22) . . . (λ− ann) + q(λ) where deg(q) ≤ n− 2
= λn − (a11 + a22 + . . .+ ann)λn−1 + q̃(λ) where deg(q̃) ≤ n− 2

tr(A) = λ1 + λ2 + . . .+ λn
trace (tr(A)): the sum of the diagonal elements ofA.
ρA(0) = ρ0 = det(−A) = (−1)n det(A) = (−1)nλ1λ2 . . . λn
Useful about determinant ofA det(A) = λ1λ2 . . . λn
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Similarity:

A andB bothn× n
B&A similar⇒ same characteristic polonomial and the same eigenvalues.

Proof:

S nonsingular matrix s.t.B = S−1AS then we have:
ρB(λ) = det

(
λI − S−1AS

)
= det

(
S−1(λI −A)S

)
= det

(
S−1

)
det(λI −A) det(S) = det(λI −A) =

ρA(λ)

Systems of linear differential equations:

Terminology:

Differential equations used to model dynamical systems in a variety of context including mechanical,
electrical, hydraulic etc. systems.
System of linear differential equation is of the form x′(t) = Ax(t)
Where ′ denotes the derivative w.r.t. time variable t,x : R→ Rn vector-valued function andA andn×
n matrix.

Initial value problem:

amount finding solution for x′(t) = Ax(t) and x(0) = x0 for anAn×n and a givenn−vector x

solution

Considetrx(t) = eatx0
real number a the exponential of a can be expressed by a power series of the form:
ea = 1 + a+ 1

2!a
2 + 1

3a
3 + . . .

Similarly we define the matrix exponential by the power series:
eA := I +A+ 1

2!A
2 + 1

3!A
3 + . . .

Thanks to uniform convergence of the above series we have:
d
dte

tA = d
dt (I + tA+ 1

2! t
2A2 + 1

3! t
3A3 + . . .) = A+ tA2 + 1

2! t
2A3 + . . .

d
dte

tA = A(I + tA+ 1
2! t

2A2 + . . .) = AetA

Therefore, the solution of initial value problem above given by x(t) = etAx0.
Indeed we have x′(t) = (etAx0)′ = AetAx0 = Ax(t) and x(0) = e0·Ax0 = x0

matrix exponential of similar matrices:

IfA andB bothn× n matrices and similar, then eB = S−1eAS

proof

We can prove thatBk = S−1AkS for all k = 1, 2, . . . ,by induction on k
From similarity we have:B = S−1AS
AssumeBl = S−1AlS for some l ≥ 1
Bl+1 = B ·Bl = S−1AS · S−1AlS = S−1AAlS = S−1Al+1S
Then: eB = I+B+ 1

2!B
2+ . . . = I+S−1AS+ 1

2!S
−1A2S+ . . . = S−1(I+A+ 1

2!A
2+ . . .)S = S−1eAS
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Observation:

D =

 d1 d2 . . .
dn

⇒ Dk =


dk1

dk2

. . .
dkn


⇒ eD =

[ 1
1

. . .
1

]
+

 d1 d2 . . .
dn

+ 1
2!


d21

d22

. . .
d2n

+ . . .

eD =

 ed1 ed2 . . .
edn


If a given square matrixA is similar to a diagonal matrixD, thenA = S−1DS for some
nonsingular matrixS and eA = S−1eDS

Example:

A = [ 0 1
0 0 ] Does there exists a nonsingularS ∈ R2×2 s.t.A = S−1DS

SoSA = DS
D =

[
e 0
0 f

]
andS =

[
a b
c d

]
SA = [ 0 a0 c ]
DS =

[
ea eb
fc fd

]
So then ea = 0 and fc = 0
Suppose that a = 0 then c 6= 0 becauseS is a nonzero matrix. Thus f = 0 since c = fd then c = 0 so
contradiction so a 6= 0

Suppose that e = 0 since a = eb then a is zero, which is not possible.
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Lecture 14

Diagonalization:

Diagonalizable matrixA exists nonsingular matrixX and diagonal matrixD s.t.X−1AX = D
We sayX diagonalizesA iffX−1AX = D ⇔ AX = XD

Example:

A = [ 0 1
0 0 ] , X =

[
a b
c d

]
andD =

[
e 0
0 f

]
We seeAX = [ c d0 0 ] andXD =

[
ea fb
ec fd

]
ClaimAX = XD ⇒ c = d = 0
Suppose c 6= 0⇒ c = ea = 0⇒ e 6= 0 contradicts⇒ ec = 0
Suppose d 6= 0 since d = fb⇒ f 6= 0 contradicts fd = 0 If c = d = 0, thenX must be singular.

Definition:

Ann× n matrix is diagonalizable iff it hasn linearly independent eigenvectors.

proof:

SPS A ∈ R linearly independent eigenvectors x1, . . . ,xn ThenX = [ x1 x2 ... xn ]
Ntoe thatAX = [Ax1 Ax2 ... Axn ] = [ λ1x1 λ2x2 ... λnxn ]

AX = [ x1 x2 ... xn ] = XD and thereforeA is diagonalizable.

A diagonalizable, thenAX = XD for some nonsingularX and diagonalD
HenceAx1 = diixi. So xi eigen vector corresponding to dii nonsingularity ofX implies thatA hasn
linearly independent eigenvectors

Observation:

A diagonalizable, thenX−1AX = D nonsingular matrixX and a diagonal matrixD,then:
Column vectorsX eigenvectors ofA
Diagonal elementsD eigenvalues of A
X andD are not unique.
(recording columns ofX andDwould lead to a different pairs (X ′, D′))

Theorem:

Ifλ1, . . . , λk distinct eigenvalues(λi 6= λj for i 6= j) ofA with the corresponding eigenvectors x1, . . . ,xk,
then those vectors are linearly independent.

Proof:

r dimension subspace spanned by x1,x2, . . . ,xk
Suppose r < k
Without lost of generality, we can assume that x1, . . . ,xr linearly independent. Since x1, . . . ,xr+1

SO exists scalers c1, . . . , cr not all zero s.t.:
c1x1 + . . .+ cr+1xr+1 = 0
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Since x1, . . . ,xr linearly independent cr+1 must be nonzero.
Hence cr+1xr+1 6= 0
and thus c1, c2, . . . , cr can not be all zero.
c1Ax1 + . . .+ cr+1Axr+1 = 0
c1λ1x1 + . . .+ cr+1λr+1xr+1 = 0
c1(λ1 − λr+1)x1 + . . .+ cr(λr − λr+1)xr = 0
This contradicts the independence of x1, . . . ,xr
Thus, r must equal k

distinct eigenvalues:

Any square matrix with distinct eigenvalues is diagonalizable.

Example:

A1 = [ 0 1
0 0 ] then ρA1

(λ) = λ2 not diagonalizable.
A2 = [ 0 0

0 0 ]⇒ ρA2
(λ) = λ2

⇒ A2 already diagonal.
⇒ A2 diagonalizable.
A = [ 0 1

1 0 ]
What is eA

ρA(λ) =
∣∣ λ −1
−1 λ

∣∣⇒ λ1 = −1 andλ2 = 1
Eigen vectors forλ1 = −1
0 = (λ1I −A)x
[ x1
x2

] = α
[

1
−1
]

Same way eigenvectors forλ2
[ x1
x2

] = β [ 11 ]
X =

[
1 1
−1 1

]
andD =

[−1 0
0 1

]
AX =

[−1 1
1 1

]
= XD

X−1 = 1
2

[
1 −1
1 1

]
eA = X · eD ·X−1 = X

[
e−1 0
0 e

]
· 12
[
1 −1
1 1

]
= 1

2

[
e+e−1 e−e−1

e−e−1 e+e−1

]
=
[
cosh(1) sinh(1)
sinh(1) cosh(1)

]
Markov Chains:

Stochastic process: sequence experiments, which the outcome at any stage depends on chance.
Markov chain: Stochastic process with:
(1) Set of possible outcomes or states finite.
(2) probaibility of next outcome depends only previous outcome.
(3) probabilities constant over time.

If a Markov chain with ann× n transition matrixA converges to a steady-state vector x ,then:
(1) x probability vector.
(2)λ1 = 1 eigenvalue ofA and x eigenvector beloning toλ1

Ifλ1 dominant eigenvalue stochastic matrixA, Markov chain transitionA converge to steady state
vector.
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