Linear Algebra 1, University of Groningen H.M. Goossens

Lecture 1
Definitions:
Linear equation inn unknowns m X nsystem:
Definition lin. system of m equations inn unknowns.
Regular form: a1r1 + anx, = b a1121 + a19x2 + ... + a1, = b
a91x1 + a22T2 + ...+ A2pTy = b2
Am1T1 + AmaT2 + ...+ ATy = by
Solution: n numbers, satisfies all m equations
2x2 2x3 3 %2
Tx1+220=2 | z1+x9—23=2 | T1+T2=2
E 1
xample I1—|—4JC2:3 2I1—|—1‘2—|—1‘3:4 1‘1—1‘2:1
xr1 = 4
ai,...,ap&bora;;, b; real numbers, x1, ..., 2, in both situations variables.

TYPE OF SOLUTIONS:

(1) inconsistent: no solutions.

(2) consistent: if it has at least one solution.
(3) Solution set: set of all solutions

Example:
System 1+ a2 =2 1+ a0 =2 1+ a0 =2
Tl — Tog =2 T+ a0 =1 -1 — To = —2
Type of solution Consistent incosistent consistent
Exactly one solution infintely many solutions,
(z1,22) = (2,0) (x1,22) = (a,2 — a) wherea € R

Definitions (2):
EQUIVALENT SYSTEMS: 2 lin. system of equations, same number of unknowns, same solution set.

Consider the linear system of equations, like in the tabel above, then we have:

Coefficient matrix Augmented matrix:
a1 ais ... ain a1 ai2 ... aip | b1
a21 Q22 ... G2n a1 a22 ... a2n bg
Am1 Am2 ... Gmn Aml Am2 .- Gmn | bm

P1voT: the first nonzero entry in the PIvOTAL ROW: The first row.
SQUARE MATRIX: when then number of rows are equal to the number of unknowns.

ELEMENTARY ROW OPERATION:

(1) Interchange two rows

(2) Multiply a row by a nonzero real number

(3) Replace a row by its sum with a multiple of another row.
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STRICT TRIANGULAR FORM:
kth equation, coefficient of the first k — 1 variable are all zero, coefficient of z is nonzero

TYPE OF SYSTEMS:

Overdetermined system:if there are more equations then unknowns. Usually (not always) inconsis-
tent.

Underdetermined system: if there are fewer equations than unknowns.

Homogeneous: If the constants on the right-handside are all zero. Are always consistant. Has a
nontrivial solution ofn > m

TYPE OF VARIABLES.
Lead variables: the first nonzero element in each row of the row echelon form.
Free variables: All elements that are not lead variables.

Row echelon form:

(1) first nonzero entry each nonzero row is 1.

(2) rowk does not consist entirely zeros, number of leading zero’s ink + 1 greater than number
leading zero’s k

(3) Rows with entries all zero, below rows having nonzero entries.

GAUSSIAN ELIMINATION: The proces of using row operations to transform a linear system into
one whose augmented matrix is in row echelon form.

Examples:

LEAD AND FREE VARIABLES:
When we_have the matrix:

1 . . .
(8 0123 thenxq, z3, x5 are the lead variables, and the other variables (z2,24) are the free vari-

ables.

ROW ECHELON FORM AND NOT ROW ECHELON FORM:
102 1050
Row echelon form ‘ (017) ‘ (0012) ‘
001 0000
NOT Row echelon form: ‘ (83(1)) ‘ ) ‘ )
BRING A AUGMENTED MATRIX IN ROW ECHELON FORM:
1:
11111]1 111111 11111]1
001120 (3)7(3)_2(2) 001120 (4)_(4)_(3) 001120
R R LR EE B S R e R LR
001130 (5) =(5) = (2) 0000 1|0 0000 0|3
Wi [(bhirin
4)=—=
— 2 — 000O0T1(3
(5) = (5) + 3(4) 000001
000O0O0|O0
These last matrix is incosistent. We see that in the last two rows. They say namely that Ox; + 0xs +

Ox3 +0x4 +0z5 =1 so0 =1 which is not true.
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2:
-1 -4 0 =5 —1|-6 1 405 16 (2)=(2)-5(1) 1405 16
5 20 1 29 5 |34 = 520 1 29 5|34 0014 0|4
<4 16 1 24 1 30)%(1) (1)_><4 16124130>—>(3):(3)-4(1)—> 0014 —3|6
140516
- 3)=03)-(2) — 53(1)2 (1)?1 - 3)=—-L@3)—= (001 40| 4
0000 —3[2 3 00001|-2

Lead variables: x1, x3, T5

Free variables: x5, x4

By back sabstitution:

rs = 2&x3 = 4 — dr &1 =4 — 4dxo — Say

Definition (3)

A matrix is in the REDUCED ROW ECHELON FOR when:
(1) It is in row echelon form
(2) The first nonzero entry in each ROW is the only nonzero in its COLUMN.

GAUSS-JORDAN REDUCTION: The process of using elementary row operations to transform a matrix
into reduced row echelon form.

Example:

IN REDUCED ROW ECHELON FORM: ‘ NOT IN THE REDUCED ROW ECHELON FORM

1203 1
0014 0
0000 0
1002 1
0103 0
0014 0

OONOOO

FROM ROW ECHELON FORM TO REDUCED ROW ECHELON FORM:
The professor used other matrices/ But every matrix in row echelon form can be reduced to a matrix
in reduced row echelon form, so i will use the matrix we already used before.

1:
For the first matrix, I used the matrix like before, but then with 3 equations to make it consistent.

So I will use: .
0 ) —
3

1111 1100 -1
011 2‘0 —)(1):(1)—(2)—> 0011 2
0001|3 0000O0 1

0 D=M+@) (00112
$) > m=me@o (o1

11000
(2) =(2)—2(3) — 886(1)(1)36) which is in the reduced row echelon form.
2:
140516 1405 0|62
<0 0140 42)—>(1):(1)—(3)—> 001404 | which is already in the reduced row
00001|-3% 0000 1|-2

echelon form.

term 1b 2020-2021 Page 3



Linear Algebra 1, University of Groningen H.M. Goossens

Application:
Kirchoff’s Laws:

(1) At every node the sum of the incoming currents equal the sum of the outgoing currents.
(2) Around ever closed loop, the algebraic sum of the voltage gains must equal the algebraic sum of
the voltage drops.

The voltage drops F for each resistor by Ohm’s Law: E = ¢ R wherei current in amperes, R in ohms.

Chemical equations:

Photosynthesis:
21C09 + 19 H20 — 2305 + 24CsH120¢
First balans carbon, oxigen and hydrogen:
H ‘ 0] ‘ C
21’2 = 12:]54 ‘ 2:171 + X2 = 2$3 + 61‘4 ‘ T = 6$4
Tr1 — 61’4 =0
201 +x9 — 223 — 624 =0
2x9 — 1224 =0
So we see that 1 = 29 = 23 = 64
If we takexy, = 1,thenxy =22 =23 =06
So then we have: 6C Oy + 6 H20 — 605 + CgH1204
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Lecture 2

Theorem:

Every m x n homogeneous system has a nontrivial solution ifn > m

Proof:

(-) homogeneous system = at most m nonzero row’s = at most m lead variables.

(-) nunknowns butn > mso at leastn —m > 0 free variables.
(-) Choose at least one free variables nonzero — nonzero solution.

Notations for matrices and vectors:

Matrices denoted by capital letters.

When matrix A hasirows and j columns then A = (a;;)

m X n matrix

R™>" denotes the set of allm x n matrices with real enteries.

Row vector Column Vector
1 X n matrix n X 1 matrix
T
T2
Y=(v1un - ym) X = .
I.n
ay
. . 52
So when Ais anm X n matrix, then A= . | = (a1 a2 ... an)

am

Definition (2)
Algebraic properties:

Let’s say we have twom X n matrices: A&B
(-) A= Biffa;; = b;; for eachiand j
) aAis them x n matrix whose entry is aa;;

) A = (ai;) and B = (b;;) then A + B = (a;; + b;;) which ism x n

)C = AB which is anm times m matrix. Only defined when the number of columns of A equal to

(_
(_
(-)ZERO MATRIX O the matrix whose entries are all zero.
(_
the number of rows of B. Calculation by Falk’s scheme.

b
SoAB = (Abl, PN ,Abn) andcij = §ibj = Z aikbkj
k=1

Matriz multiplication and linear systems:

We see that Ax = b where:

ail @iz ... ain z1 b1
az1 @22 ... A2n T2 ba
A= . . andx = . Jandb =
Aml Gma e G, Tn b;n
ap1xi+aiecet...+ainxy b1 aix
a21T1+a22x2+...+az2nTn ba as
Because Ax = . = . = . =xia;+...+x,a,
Am1T1+AmaTot A AmnTn b;n é};x
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Example:

SCALER MULTIPLICATION: A = (332) =34 = (3§ %)
10 41 51

Sum: (gg) + (gg) = (gg)and(i%) -(15)=0G1)

MULTIE’IiICATION:

A: g?l andB=<8_32_44)

23
Calculate C = AB

BN
54
23

T i5 4
(454) SOC:(B 4)
87 4 60 —4
Explanation first entry:

60 —4
Cij :ailblj +ai2b2j +...—|—ambnj = c11 = a11b11 +aby1 =1-04+0-2=04+2=2
LINEAR COMBINATION OF THE VECTORS al,...,an:
cilay + ...+ cpayifay,...,a, vectors inR™andcy,...,c, scalers.

OoO~Jur—

CONSISTENCY THEOREM LINEAR SYSTEMS: linear system Ax = b consistent iffb can be written as
linear combination of the column vectors of A

Example:

Is the linear system:

xr1 + 21[,’2 =1

2x1 +4x5, =1

Consistent? The answer is yes because:

The vector (1) can be written as a linear combination of the column vectors (})and (2).

z (3 +22(3) = (852

Algebra of matrices and the transpose of a matrix:

Provided indicated operations are defined, the following statement holds for all scalers «, 5 and ma-
trices A, B, C
A+B=B+A
(A+B)+C=(A+B)+C
(AB)C = A(BC)
A(B+C)=(AB+ (AC)
(A+ B)C = (AC + BC)
(aB)A = o(BA)

a(AB) = («¢A)B = A(aB)
(a+B)A=aA+ pA
a(A+ B)=aA+aB
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TRANSPOSE:

Examples:
alGesy |G| (313)
1

al (3) |G G

Symmetric

[\l (SN )
W |

Identity matrix:
e . . lifi =
Then x n identity matrix is the matrix I,, = (6;;) where J;; = )
0 otherwise

For example:
I = 1&1I5 = (6?8)
001

Multiplicative inverse:

NONSIGNULAR OR INVERTIBLE MATRIX: if there exists an matrix B,,x, s.t. AB = BA = I,,then A is
nonsingular.

Notation inverse of nonsingular matrix A is A~!

SINGULAR: when ann X n matrix does not hav ea multiplicative inverse. An N X n matrix is said
to be nonsingular if it does not have a multiplicative inverse.

Theorem:

(1) a matrix can have at most one inverse.
(2)If Aand B are nonsingularn x n matrix then AB is also nonsingular and (AB)~! = B~1A~!

Proof:

(1) Suppose BandC both inverses of A,where A is nonsingular
B=BI=B(AC)=(BA)C=1IC=C

So B = C so A has one multiplicative inverse.
(2)(B7'A™Y)(AB) = B Y (A"'A)B=B"'I,B=B"'B=1,
(AB)(B™'A™YY = A(BB YA ' = ALLA7'AA = I,

— ABis nonsignular and its inverse is B~1A™!
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Examples:

Find the multiplicative inverse of A = (} })
Define B = (b“ b1z )

ba1 ba2
So we see that AB = (b1 fbz1 b12fb22 ) and BA

we want that those matrices both equal I, = (§ 9

Sor (Pnptm gt ) = (11 t) = (51)

We see that by + b1o = b1 = 1thereforeb;; =0
We also see that b1y + by = by1 we said that by; = 0, but b1 + b1 = by must equal 1
Therefore, A has no multiplicative inverse.

Sy

Application:

This is a walk on a graph, which we also have seen at Kaleidoscope (part 2).
We define a;; as follows:
~_JLif{V;,V;}is an edge of the graph
i = 0if there is no edge joining V; and V;
ADJACENCY MATRIX of the graph: the matrix A where A = (a;;)
The matrix A called the adjacency matrix of the graph, is as follows:

[=lelo
oo

01000

A= ( (8)§ (%) when {V;, V;} edge on graph thena;; = aj; =1, otherwisea;; = a;j; =0
01110

From this we can conclude the following:

(k)

71

(k)

i; represents the (i, j) entry of A¥, thena;’ is equal to the

If A is an n x n matrix, of a graph anda
number of walks of length k from V; to V;
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Lecture 3

Equivalent systems:

Reason:

Ax = b which is anm x n linear system.

& MAx = Mb & M~ 1(MAX) = M '(Mb) & Ax=b & Ux=c

Use of a sequence nonsingular matrices E ... E)kgive us:U = Ey ... EyAandc = E) ... E1b
The system will be equivalent if M is nonsignular where M = E, ... E;

We know that M is nonsingular, because it is a product of nonsingular matrices.

ELEMENTARY MATRIX: a matrix that represents an elementary row operator.

Elementary matrices types:

Type Definition Example
1 obtained by interchanging 2 rows of I E, = (2 é %) the first and

second row of I3 are swapped.

2 Obtained by multiplying a row E, = (é g §)
by a nonzero number. last row of I3 multiplied by 2
3 adding a multiple of one row FEs = (é g (ii)
to another, from matrix I inls: (1)=(1)+3(3)

Theorem and Proof:

ELEMENTARY MATRICES NONSINGULARITY E elementary matrix — E nonsingular — E~! elemen-
tary matrix same type.

I proof this by example:

Type calculations conclusion
010 010 -
1 E, = 100)-(100) =L~ E'=F,
001 001
100 100 _
2 (010) 010 =1, By = E}
002 003
103 T0 -3 _
3 (010)-(010) =I; > E;' =F}
001 00 1

Row equivalent

A matrix B is row equivalent to a matrix A if there exist elementary matrices F, Fs, ... Ej s.t.
B=Ey -Ex_1-Ey-F1A

Theorem:

1) When A is row equivalent to B then B is row equivalent to A

2) Let A be a square matrix, then the following statements are equivalent:
a) A is nonsingular

b) Ax = 0 has only the trivial solution. 0

c) A is row equivalent to ]

(
(
(
(
(
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Proof:
(1):

When A is row equivalent to B then:

A=FE; -Eyx_1-...-Ey-E1-B

—A-E'=Ey-E' Ey_1-...-Ey - F-B

—A-E'=E;,-...-E2-E,-B

—A-E ' E ' =F,9-...Fy-E -B

Do this till the righthandside is equal to B

A-EVEYN .. By ET'=B

If A is rowequivalent to B and B is row equivalent toC' then A is also row equivalent to C

(2):
If (a) holds, then (b) must hold.
Let z best. Ax=0 then,x=Ix=A"'4Ax=A4"'0=0

If (b) holds, then (c) must holds.

(-)Applying elementary row operations to Ax = 0 we obtainUx = 0 whereU is in reduced row
echelon form.

(-) If U has a zero row, there would be a nonzero solution, because there must be at least one free
variable.

Therefore, U has no such rows, since it is in reduced row echelon form, we see that U = I

If (c) holds, then (a) must holds.

(-(YA=ExEy_1... EsE\l = ExEg_ ... B2 Ey

(-) Elementary matrices are nonsingular and product of nonsingular matrices is nonsingular so A is
also nonsingular.

Inverse computation application:

Ax =Db thenx = A~1b

Observation:

Square matrix A nonsinuglar <+ [ is row equivalent to A
I=EyEy_1...BEiA— E7'Ey BN B = A
substitute this we find, A(ExEx_1... E2Ey) =1

Conclusion and computation:

CONCLUSION: A~ = ELEy_1 ... By Fy

CONCLUSION:

AB=1—-BA=1

Transform the matrix [A I] into reduced row echelon form. IfA is nonsingular, then you will
obtain [I A_l] since:

EyEL_1...EE, [A I] = [I A_l]
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Application of nonsingularity to linear (square) systems:

The linear system Ax = b where A = n x n it has a unique solution +> A is nonsingular.

Proof:

Proof 1:

Suppose A is nonsingular: x satisfies: Ax = b thenA 'Ax = A7'b — x = A7 'b so unique
solution.

Proof 2:

(-) Suppose that x is the unique solution of Ax = b

(-) Let z be such that:Az = 0 A is namely nonsingular if and only ifz = 0

(-) Note that A(x +z) = Ax+ Az=Ax=Db

(-) Uniqueness implies that X +z = X hencez =0

(-) Consequently, A is nonsingular.

Elementary triangular factorization:

A square matrix is said to be:

(-) upper triangular ifa;; =0 fori > j

) lower triangular ifa;; = 0 fori < j

) Triangular if it is either upper triangular or lower triangular.

) Diagonal: Ifa;; = Ofori # j.

) strict upper (lower) triangular if it is upper (lower) triangular and every diagonal entry is nonzero.

(_
(_
(_
(_

Triangular (LU) factorization of elementary matrices:

If square matrix A can be geduced to strict upper triangular form by (3), then it can be written by
an lower (L) and upper (U) triangular matrix = factorization: LU factorization.

Example:

Strict upper triangular:

(124)

2510

3713

124 (2)=-2(1)+(2) (1 24) _ (1 2 4 )
(138) | = a—supe = | 012 [=@=—@+0)=| (314
(124)‘ 100)(100) (100) (124)
25 10 210 010 010 = (2510
3713 0 01 —301 0-11 3713
So therefore we know:

124 10 0 100 100

(012 :(010)(0 10)(—210)/1

00 -1 0-11 —301 001
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Take the inverse of the first 3 matrices on the left hand side, and multiply everything out, then you
get:

A= (%?8) (6? 2 )
311/ \00 -1
The left one is a lower triangular, and the right one is upper triangular.

Partioned matrices:

Rules:
(-) If Ay and By, - has been partitioned into columns (bi bz ... b, ) then AB = (Ab; Ab, ... Ab, )

A= (ﬁ;)where (A1)kxnand (Az2)(m—r)xn then AB = (ﬁ;g)
Ay A2)andB = (g;)thenAB = AlBl + A2B2

_ (A A2 _ (_B11|Bi2 . _ [ A11B11 + A12B21 | A11B12 + A12B22
- ( 21 [ A22 and B = 21 | Ba2 then: AB = A21B11 + A22B21 | A21B12 + A22Ba2
SCALER PRODUCT OR INNER PRODUCT: X'y wherex,y € R"

INNER PRODUCT: Xy’ wherex,y € R"
OUTER PRODUCT EXPANSION: XY T where X is anm x n matrix and Y an k x n matrix.
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Lecture 4

Determinants:

DEFINITION 1: A = (a;;) which isn x n. Then M;; denote the (n — 1) x (n — 1) matrix, obtained
by deleting the row and column of A which ocntains a;;
DEFINITION 2: Determinant of n x n matrix (det(A)) scaler defined by:

ail ifn=1
a1l + a12A12 + ...+ alnAln ifn>1
Where Aij = (—1)i+j det(Mij)

det(A) =

(-) det(M;;) minor of a,;
(-) Aj;j cofactor of a;;

Example:

aii ai12 ai3
A= <a21 as2 agg) then My; = (%22 922 ) and Mgg = (211 213

a a, a a
azl as2 as3 32 A33 21 423

Cofactor expansion:

A e R"*"withn > 27 det(A) by cofactor expansion along any row and column.
(—) Row: det(A) =a;1Ai1 +apAip + ...+ ainAin
(-) Column: det(A) = alelj + G,QjAgj +...+ anjAnj

Examples:
abc
F=(2h) P (1)
Cofactor expansion along row 1 Cofactor expansion along row 1
det(F) = a11A11 + a12A12 det(P) = (—1)1+1a ‘ Z { ‘ + (—1)1+2 ‘ (gi {
= (—1)1+1G,11 det(Mn) + (—1)1+26L12 det(M12) +(—1)1+36 ‘ Z i |
= (—1)"adet(d) + (—1)'"2bdet(c)
=ad — bc =aei +bfg+ cdh — gec — hfa — idb
Saurus’ rule (only forn = 3)!II!
Theorem:

Let A be a square matrix, Then, the following statements holds.
(1) det(A) = Owhen:

a) A has a zero row

b) or A has a zero column

c) or A has two identical columns

d) or A has two identical rows.

2) Atriangular matrix?det(A) = product diagonal entries.

(
(
(
(
(
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Example:

30
=151
9

i)

Cofactor expansion along row 3
det(T) = (~1)**2det (§91) = ~(-3det (33) — 1det (1}) =3(2 = 9) + (3 - 1) = —19

1
0
0
3

o] NO—W

Lemma

Let A be an x n matrix. Ifi # j then ailAjl + aiQAjg + ...+ ainAjn =0

ail ... Ain aii ... Qin

Qi1 ... Qin a1l ... Qin

_ . . *

A= : : — A* =
aj1 ... Ajn aj1 ... Qin
anl ... Ann anl --- AGnn

0 = det(A*) 'cause it has two identity rows.
0= ailAjl + aigA;»g + ...+ amA;” = ailAjl + aigAjQ + ...+ amAjn

Effect of elementary row operations:

Type Rule Calculations conclusion
1 Two rows interchanged A=(2%).E=09}) Sodet(EA) = —det(A)
SoEA=(¢9) = det(E) det(A)

det(EFA) = ad — beand
det(EA) = bc — ad

2 One row is multiplied det(FA) = adet(A) det(FA) = det(E) det(A)
by a nonzero number det(E) = det(EI) = adet(I) = «
3 Adding a multiple of one row det(E) =1 det(FEA) = det(A)
to another row. Expanding along jth row: det(FA) = det(E) det(A)

det(EA) = (aj1 + cain)An+
A ((Zjn + Cain>Ajn
det(FA) =det(A)+c¢-0

det(F) = -1
det(EA) = det(E) det(A) < det(E) = a # 0
det(E) =1
Examples:
Vandermongie matrices:
vy = ii‘i; wherea # b # ¢
lcec
1aa? _ b—a b2—a2
det (% i z;i) = det (C_ac 62_a2)

=(b—a)(c—a)det (;27%) = (b—a)(c—a)(c—b) = (a—b)(b—c)(c—a)
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Lecture 5

Singularity, row operations:

A square matrix Ais singular iff det(4) =0

Proof:

Proof by contradiction:

B nonsingular< U = EyE;_1 ... E1B

Where U is in Reduced row echelon form and F; all elementary matrices.

< det(U) = det(EgEj—1 ... E1B) < det(U) = det(Ey) det(Eg_1) . .. det(Eq) det(B)
We know that det(E;) # 0so thendet(B) # 0iffdet(U) # 0

< U in reduced row echelon form, sodet(U) # 0iffU = I

< det(A) # 0iff Brow equivalent to I < det(B) # 0iff B is nonsingular.

Proven by contradiction.

observation:

Every square matrix can be transformed to row echelon form, that is:
R=FEEi_1...FH1A

Where R is in row echelon form, and F;’s are all elementary matrices.
If the last row of R is zero, thendet(A4) =0

Otherwise, A is nonsingular and:

det(A) = [det(Ey) det(Ey_1) ... det(Ep)] ™!

Row operations vs cofactor exrpansion:

Row operation Cofactor expansion
n addition multiplication addition mulitiplication
2 1 3 1 2
3 5 10 5 9
4 14 23 23 40
5 30 44 119 205
10 285 339 3628799 6235300

determinant of a product:

A& Bbothn x nmatrices? Thendet(AB) = det(A) det(B)

Proof:

Case 1: B is singular:

Bz = 0 has nontrivial solution, so ABz = 0 has a nontrivial solution, so AB is singular,so:
0 =det(AB) = det(A)det(B) =0
Case 2: B is nonsingular:

Brow equivalent tol soB is product of elementary matrices, so AB is a A times a product of
elementary matrices. We know that det(M E) = det(M) det(E)

det(AB) = det(A) det(ExEg—1 . ..

Eq) = det(A) det(B)
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Adjoint of a matrix

Let A be an x n matrix. Its adjoint is defined by (where A;; = (—1)"*7 det(
A1 Az21 ... Apa
. A1z A2z ... Ap2
adjA =

Aln A2n Ann

fact:

Let A be an x n matrix then:
det(A)ifi =3

A iAo+ ... indin =

a;1A4j51 + a;2Aj52 + +a j {Oifi%j

observation:

(A(adjA))s ij = azlAjl + a22A32 +.+ ainAjn
A(adjA) = det(A)I
A= (dct(A adjA) = I'ifdet(A) #0

A7t = det( )adJ(A) ifdet(A) #0

21| _|10 10

231 1381 134
adid = | -[131 139 -2 ) = (=875, 2)

321 _|121 21

331 -1241 1331

Cramer’s rule:

M;j))

Let A € R"™*™and b € R™. Let A; be the matrix obtained from A by replacing theith column by b.

Ifx is the unique solution of Ax = b, thenx; = d t(A ) forj = 1,2,.

Proof:
Ax=b—-x=A"b= det(A) (adjA)b
T = b1 Ari+boAgi+..+by Ay det(Ay)

v det(A) — det(A)
Example:
A= (g a2)andb = (;!)where Ax =b
Ifai1a9e — ajoas; # 0 then

det{A1} det(As)
T1 = oAy andry =
_ (b1 a1z _ (a1 b1
Al_(bga22)7A2_(a21b2)
T = T T— b1a22:b2a12[ and To = -
110a22=012021 a110q22=012021

baai1—biaan

As we observed for Cramer’s rule, requires computation ofn + 1n x n determinants.
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Lecture 6

Vector spaces:

V set, Fset of scalers(Ror C)
PB:VxVsVand(@®:FxV — V respectively addition and scaler multiplication operators:
x,yeV=x@PyecVandaeFxecV=a@OxeV

We say that (V,F, (), ) form a vector space if the following axioms are satisfied.

Axiom Proof
x=10x
x=(1400x
x=(10Ox)DB00Ox)
x=xPlo(Ox)

1 xPy=yPx forallx,y e V —xPx=—-xPEPOOx))
—xPx=(—xPx) DOOx)
x@P-—x=xD-x)PBO0Ox)

0=0Pp(00Ox)
0=(00x)
—-x=-x0
—x=-x@PxdDy)
—x=(—xOx)Dy
2 xPy)Pz=xP(yPz) forallx,y,zeV —x=xP-—x)Py
—-x=08Py
—-x=y&o
—x=y

3 There exists0 € V s.t.x@P0=x forallx e V

4 For each x € V there exists —x € V s.t.x@P—-x=0

5 aOQEDY) = (eOx)DaOy)

for allae € Fandx,y € V
6 @ HOx=@Ox BEO
for alla, f € Fandx € V
7 @ HOx=aOFON
for alla, B € F andx € V
0=00x%
0=01+(-1)Ox
8 1Ox=x forallxeV 0=10x)P(-1)Ox)
0= x@®(-1) Ox)
(-DOx=-x

x €V then: 0Ox=0

xP-x=0=—-x=-x

((DOx=x
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Examples:

1:

Letz,y € R"anda € R Definex Py :=z+yandaGz = ax
2:

Let A,B € R"™"™anda € R. Define A@ B :=A+ Banda() A :=aA

3:

Leta,b € R witha < b. Define C[a,b] := {f : [a,b] — R|fis continuous}

Let f,g € Cla,b] anda € R

(f D 9)() i= f(x) + glx) for allz € [a,b]

(a® f)(z) = af(z) for allz € [a, b

4:

Letn be a positive integer. Define P, = {p|pis a polynomial of degree less thann}
Letp,q € P, anda € R

(r@® q)(z) == p(z) + q(x)

(«Op)(x) = ap(a)

Special types of vector spaces:

Cla, b]: Set all real-valued functions that are defined and continuous on [a, b].
P, is the set of all polynomials of degree less thann

The nullspace of a matrix

N(A) = {x e R"|Ax = 0}
If the linear system Ax = b is consistent and xg particular solution, then the vectory will also be a
solution iff y = x¢ + zwherez € N(A)

Supspace

From now one, we writex + y and ax meaningx @y and a () x respectively.

Let S be a subset of vector space V. We say that S is a subspace of V' if:
(-) S is nonempty.

(-)xe Sand weF=axe S

)x,yeS=x+yeSs

Trivial subspaces {0} and V' are subspaces of V/

All other subspaces of V' are refereed to as proper subspaces.

We refer to {0} as the zero subspace.

If S is a subspace, then0 € S
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Example:

1:
Let S = {(%é) € R3|z1 = x2}

(§) € S = S is nonempty.

Letx € S. Then there are real numbersaand bs.t.x = (%
Letx = (Z> € Sanda € R. Then,ax:a(z> = (aa> €es
b b ab .
Letx = (tg) € Sandy = (3) €S. Thenx +y = (tg) + (3) = (gig) €es
2:
S ={A€eR**?|ajy = —as }
(39) €S =S is nonempty.
Let A € S then there are real numbersa, b, cs.t. A = <_ab 2
Let A= (%) €S anda €R then ad=a (%) =(292)eS

LetA=(%%) €SandB=(%5)eS themAd+B=(%2)+(%%)=(5105)es

3: S={peP,p(1) =0} andn >0

p(z) =x—1€ S =S8 is nonempty.

Letp € S anda € R then (ap)(1) =ap(l) =0=ape S

Letp,q € S then

(p+a)(1)=p(1)+4q(1)=0=p+qge S

4:

Let S C Cla,b] be the set of all functions that have a continuous derivative on [a, b]
f(xz)=1 for allx € [a,b] = f € S = S is nonempty.

Let f € S anda € R then: (af) =af =af €S

Let f € Sandg € S then: (f+¢9) =f4+¢ =f+g€S

5:

S={feCl-11]|f(—z) = —f(z)for allz € [-1,1]}

f(xz) =0 for allx € [a,b] = f € S = S is nonempty.

Let f € S anda € R then:

(af)(—2) = af(—x) = —af(z) = —(af)(z) for allz € [-1,1] = af € S.

Let f € Sandg € S then:

(f+9)(=z) = f(=2) + 9(=2) = —f(x) —g(x) = =(f + 9)(z) forallz € [-1,1] = f+g€ S

6: NOT

S = {x € R?|zy = 27}

0 € S =S is nonempty.
Let( )GS and2 € R but
2(5 ):( )¢S

Let (}) € Sand (%) € S, but:

(D)+(2)=(2)¢s
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7:
Let A € R™*™ define: N(A) := {x € R"|Ax = 0}
0 € N(A) = N(A) is nonempty.
Letx € N(A) anda € R then: A(ax) = aAx =0= ax € N(4)
Letx € N(A)andy € N(A). them: A(x+y) =Ax+ Ay =0—>x+y € N(4)

8:
Let A= (1119). To determine N(A) we have to solve Ax = 0. Using Gauss-Jordan elimination,
we get:

M R R R N N R R R A N
m=-w-o= (17

012 10

1 =23 — rgsand xo = —2x3 + T4
21

soN(A){a<;2> +b< y > la,b € R}
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Lecture 7

Span:
LINEAR COMBINATION:
Vi,...,Vvp € V whereV, vector space, ay,...,a, € Fthena;vy+...4+a,Vv, the linear combination.
SPAN OF VECTORS:
Set of all linear combinations of the given vectorsvy,...,v,
Denoted by span(vy,...,vy)orspan(vy,...,vy,) = {avy + ... + apvy|ag, ..., an € F}
In these cases:
(-) span{vy,...,v,}spanned by vy,..., v,
Or{vy,...,v,} spanning set forV we sayvy,...,v,spanV
Example:

1 -1 -1
N(A) ={a <_1Q> +b< S > la,b € R} :Span(<_12> , ( 5 ))

0 1 0 1
Theorem:

Let V' be a vector spacevy,...v, € V, the span(vy,...v,) is a subspace.

Proof:
(-) By choosing a1 = ... = a, =0 we get 0 €span(vy,...,vy,)
=span(vy,...,vy) # 0

(-) Let 8 a scaler and v €span(vy,...vy)
(—) v=o1vy +...+a,v, for some scalers oy, as,...,a,
(-) Bv = Bayvy + ... + Bay vy, €span(vy,...vy,)

(-) Let v €span(vy,...,v,)andw € span(wy,...,Vvy,)

) v=a1vi+...+a,v, €span(vy,...,Vy,)

(-)w=p01vi+ ...+ Bnv, €span(vy,...,Vy)

)v+w=(a1+B1)vi+...+ (@n+ Bn)Vn Espan(vy,...,vy)

Definition:

The set {vi,va,...,v,} is a spanning set forV if every vector of V' can be written as a linear
combination of the vectors vy, va,..., v,

term 1b 2020-2021 Page 21



Linear Algebra 1, University of Groningen H.M. Goossens

example:

The bet{(é) ( > (i)} is a spanning set for R?
a 1 1 1

(C>—a1(8> ((1))—1—043(%):>a1+a2+a3:a,a2+a3:b,a3:c
ag=c,aa=b—c,a;=a—0>

2:
The set{(é) : (g)} is NOT a spanning set for R3:
(g) = ((1)) + o (g) = 01 = a,0s Zb,Oél =c
3:

The set {1 — 22,2 + 2,22} is a spanning set Ps
Ps the set of polynomials withn < 3

ax? +bx+ceE Py

ar? + br +c = a1 (1 — 2%) + ag(x + 2) + aza?
= (a3 — a1)2? + asz + (a1 + 20a2)

So:a=a3 —a;,b=asandc= a1 + as

= a1, as&asin terms of a, b, ¢ = spanning set.

Theorem:

Letvq,...,v, belong to a vector space V'

(1) Ifvy,...,v, spanV and one of them can be written as a linear combination of the othern — 1
vectors, then thosen — 1 vectors span V'

(2) one of the vectorsvy,...,v, is a linear combination of the othern — 1 vectors iff there exist
scalerscy, ca,...,c, not all zero s.t.c;vi +...+¢,v, =0

Proof:

(1) Supposev,, linear combination of vy,...,v,_jandx € V then:

Vp=B1vi+.. + Bao1Vao1
X=wo1Vy+...+a,vy

X =Q1Vy+...+ an(ﬂlvl + ...+ 6n—1vn—1)
x= (a1 +a,B1)vi+ ...+ (n—1+ anfBn1)Vin_1

(2)(a) Suppose v,, linear combination ofvy,...,v, then:
Vp=01vi+... .+ BV = Bivi+ .o+ BV — Vv, =0
(b) e1vi+ ...+ ¢pvy, =0ande, #0

v, = _c%,,(clvl +...+cno1Vn—_1)

Linear independence:

The vectors vy, va,..., Vv, in a vector space V are said to be

LINEARLY INDEPENDENTIf ¢1vy 4+ cave + ...+ ¢, vy, =0 impliescy =co =...=¢, =0

LINEARLY DEPENDENT if there exists scalerscy, co,...c, , not all zero s.t.c;vy+cova+...4c,v, =0
Letx1,...,x, benvectors inR™ let X = (x1 ... xa ) then these vectorsxy,...,x, linearly dependent

iff X is singular.
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Theorem:
Let f1, fo, ..., fn functions in C»~Y[a, b] and define W[f1, fa,.. ., fn] on [a,b] by:
f1(x) f2(x) oo falz)
fi(@) frlx) o fu2)
WIf1, fa,. oo, ful(2) = . : :
A P@ (7@ o @)

The function W{f1, fa, ..., fu](z) called Wronskian of f, fa, ..., fn

If there exists zg € [a,b]s.t. W([f1, fa,. .., fu](z0) # O then fi1,..., f, linearly independent.

Theorem:

Let x1,Xa,...,X, be vector inR™ and let X = (x1 x2 ... x» ). The vectorsxy,...,x, linearly depen-
dent iff X singular.

Proof:
c1 c1
[} Cc2
axi+..%X, =0& (xax..x)| . | =0&X]| . | =0
Cn Cn
Example:
1:

The vectors { ( é) (3) } € R? are linearly independent:
( )+02( ) (§) (éﬁ)(g§)=(§):>012070220
2:

The vectorspi(z) = 22 — 22 + 3,pa(z) = 222 + z + 8,and p3(z) = 22 + 8z + 7 in P? are linearly
dependent:

c1(z? =22 +3) + 2222 + 2+ 8) +c3(2? + 82 +7) —0-224+0-2+0

(c1 4+ 2co + c3)a? + (=2¢1 + 2 +8¢c3)x + (3¢ +8ca +Tc3) =022 +0-2+0

1 21 C1 0
—218 c = (0 c1 = Co = —2 =1
é(s 87) (cg) (0)§ 1=3¢ 18

Theorem:

Let vi,va, ..., v, be vectors in vector space V. Every vector in span(vy,va,...,v,) can be written
uniquely as a linear combination of vy, va, ..., v, iff vi, vy, ..., v, are linearly independent.
Proof:

Suppose that vy, ..., v, lin. independent, and let x €span(vy,...,v,)

Sox=av+...+a,vp, =51vi+...+ Bnva

= (a1 —B1)vi+...+(an—Bn)vn =0
Vi,...,Vylin. independent = oy = B;for alll <i < n
= unique combination.
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Basis and dimension:

The vectors vy, va,...,v, form a basis for a vector spaceV if:
(1) vy, va,..., v, are linearly independent.

(2)vi,va,...,v, spanV

Example:

1:

1 0 0\ . .
The set {e1, es,e3} wheree; = (8),62 = ((1)),61 = ((1)), is a basis for R3. There are many other

basis. For instance, the following are bases for R?
() (8) - (1pamat(3). (5)- ()
2.

The Set{Ell,Elg,Egl,EQQ} WhereE11 = (ég),Elg = (8(1)),E21 = ((1)8),E22 = (8?) is a basis
for R2x2

Theorem:

LINEARLY DEPENDENT:

let {vy,...,v,} be a spanning set for a vector spaceV andm be a positive integer withm > n.
then any collection of m vectors in V' is linearly dependent.

TWwO BASIS:

If Both{vy,...,v,}and{uy,...,u,} bases for a vector space V thenn =m

Proof

LINEARLY DEPENDENT.

Let uy, ug, ..., u, bem vectors inV wherem > n since {vy,vs,...,v,} is a spanning sat we have:
u; =a11vi+...+a1n,vn

Ul = Q2101 + A22V2 + ... + A2nVn

W, = amiVi+ ...+ a8mnVn
m

m
O0=cius +... 4+ ey = (D, ayc)vi + (O auci) vy
-1

i=1 i
m
homogeneusm x nlin. system, with ¢; unknowns: ) a;;¢, =0,j=1,2,...,n
i=1
Sincem > n there exists scalerscy, ca, ..., cp suclzl that:ciu; + cous + ...+ ¢cu,, =0
If both {vy,va,...,v,}and {us,us,...,u,,} are bases for a vector space V', thenn = m
The set {vi,va,...,v,} is a spanning set and vectorsuj,us,...,u,, are linearly independent, As

such Thm (4.45) implies that m < n same reasoning givesn < m som <n

Definition:

V vector space.

(-) basis n vecotrs = dim(V) = n

(-) Subspace S = {0} of V dim(S) =0

(-) V finite dimensional = finite set of vectors spans V. Otherwise infinite dimensional.
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Lecture 8

Basis and dimension:

Let V' be a vector space of dimensionn > 0 then:
(1) any set ofn vectors

(a) spansV are lin. independent.

(b) that are lin. independent spans V'

(2) when #vectors < n cannot span’V’

(3) #vectors < n can be completed to form basis for V

Definition:

V vector space and E = (vy,...,v,) ordered basis for V'
x € Vandey,...,c, scalers then:x = c;vy + ...+ c,vy,

c1
Cco

So each x unique vector: COORDINATE VECTOR:c = | . | € R"

COORDINATES OF X RELATIVE TO E:cy,...,cp

Example:

In a certain town, 30% of the married women get divorced each year and 20% of the single womeng
et married each year. There are 8000 married women and 2000 single women. Assume that the total
populaition remains constant. How many married women and signle women will be after n years
Let my, denote the number of married women year k and s the number of single women in year k

(5if) = (Cametoser) = (B3 83) (50) (%)

(%) = (§860)

When we go further we will see that:

(o) =(0568)" (%)

Note that:

(5303)(3) = (3)and (§38:3) (') =0.5(7")
This means that:

(5363)"(3) =(3) and(§363)" (') = 05" (')
So note that:

(") = (5606) = 8000 (§) +2000(§) = 2000(3) — 4000 (")
As such we obtain:

(") =2000 (%) — 4000 - (0.5)" (')
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Change of basis:

E:(VlaVQ)"'?VTI) F:(Wlaw27"'7wn)
X =0C1V1+ Ve + ...+ cpvy X =diwi +dows + ... +d,w,
c=[x|g d = [x]F

V1 = tqu + t21W2 + ...+ tnlwn
Vo = t19W1 + tooaWo + ... + tpowW,

Vy, = tlnwl + thWQ + ...+ tnnwn

So we can say:
X = 01V1 + cova . —|— CnVn

n
x = [Z trjcilwr + [Zl tajcilwa +. [Zl tnjC;lan
J J=
dy ti1 tiz2 ... tin c1
n da to1 t22 ... t2n c2
= Z tijcj = . =
=t d, tn1 tnz e ton cn

d =Tc andT is called the transition matrix.

Example:

1:

vy = t11W1 + 21 Wa + t31W3 = [

1
1
1
2
Vo = 119W7 + loogWo 4 {30W3 = 123
1
5
3

V3 = t13W1 + to3Wo + t33W3 = [ =-3 [é:| 0 |:(%)] +4 |:%:|
SoT = [—11%703]
1 2 4

2:
Let E = (v1,va,v3) = (1,22,42% — 2)and F = (w1, wa, w3) = (1, 2,2?)

Vi =t1iwy + tarwse + 31wy = 1 = 1-1+4 Ocdotz + 0 - 22
vz=t12w1+t22w2+t32w3:>2x:0~1+2-x+0~x2
VS:t13w1+t23w2+t33w3:>4x2—2:—2-1+0-x—|—4-x2

0 -2
SoT = (03¢ | = d= (@)l = Tlp(w)]s = Te
— 1 _1 _ 1 0 0.5 1
pz)=1+4z+82%=d= (g) andec =T d_<8005 0 )(g)
pz)=1+4x+82%=5-1+2-2x+2- (42 — 2)
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Row and column space:

Let A € R™*", ROW SPACE OF A the subspace of R'*" spanned by the rows of A
COLUMN SPACE OF A the subspace of R™*! spanned by the columns of A

Example:

Let A=[§19]
The row space of A consists of row vectors of the form:
af100]+B[o12] =[ap2a] =rowspace(A) =span((100),(012))

Whereas the column space of A consists of column vectors of the form:
alg]+B19]+7[3] = [s+2y] =colspace(A) =span([§], [}])

row equivalent matrices and proof:

Two row equivalent matrices have the same row space.
Proof:

B = AELEy_; ... E; therefore rowspace(A) Crowspace(B)
A= BE|E;_;...FE; therefore rowspace(B) Crowspace(A)
Sorowspace(A) =rowspace(B)

Rank:

Rank of matrix A(rank(A)) =dimension row space A
determine rank A? first A in row echelon form.
nonzero rows echelon form=basis row space, number nonzero rows=rank.

(1) A linear system Ax = b is consistent iff b is a linear combination of the columns of A
(2) A linear system Ax = b is consistent iff b is in the column space of A

Proof:
T 1
o T2

Suppose Ax = b is consistent, thendx = | . st.A-| . | = A= (0102 an)
z'n z'n

given xya; + Toas + ... + xpa, = b= b lim. com. of columns of A

b is a lin. col. of col. of A says:b = z1a1 + 2202 + ...+ zpay,
Where 21, 29, ..., 2, are scalers and A = (a1 a2 ... an ), then: Ax =b
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Theorem:

Let A € R™*™ then:

(1) The linear system Ax = b is consistent for everyb € R™ iff the column vectors of A span R™
(2) The linear system Ax = b has at most one solution for everyb € R™ iff column vectors of A
independent.

Proof

2:

Ax = U at most 1 solution for everyb € R™ = ax = 0 at most one solution = lin. independent.
= Ax = 0 trivial solution.

Suppose x1&x5 solutions Ax; =

= Ax;—x2)=b—-b=0=x; =%

Definition and theorems:

Dimension of the null space of A is called the nullity of A ; null(A)
Thm: A € R™*™ then rank(A)4null(A) =n

Proof

If A € R™*" then rank(A)+null(4) = n

(-) Let U be a row reduced echelon form of A

(-) Ax =0iffUx =

(-) If rank(A) = rthen U hasr nonzero rows.

(-) Therefore, there arer lead variables andn — r free variables.
(-) The dimension of the nullspace of A must ben —r

Theorem:

(1) Ann x nmatrix A nonsingular iff column vectors A form basis R™
(2) For every matrix, the dimension of the row space and that of the column space are equal.

Proof:

(-) Let A € R™*™ rank(A) = r, and U be a row echelon form of A

(-) U hasr leading1’s. and its columns corresponding to leading 1’s are lin. independent.
(-) The column spaces of Aand U are not the same, in general.

(-) LetU € R™ " be the matrix obtained form U by deleting all columns corresponding to free
variables

(-) Let A € R™*" be the matrix obtained from A by deleting the same columns.

(-) Ax = 0iffUx =0

(-) Since columns U linearly independent: Ux = 0 = x = 0 Therefore: Ax =0 = x = 0
(-) As such the columns are linearly independent.

(-)dim(colspace(A)) >dim(colspace(A)) > r = dim(rowspace(A))

(-) dim(rowspace(A))=dim(colspace(AT)) >dim(rowspace(AT)) =dim(colspace(A))

(-) dim(colspace(A)) =dim(rowspace(A))
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Lecture 9

Linear transformation:

A mapping L from a vector space V' into a vector space W is said to be a linear transformation if:
L(ax + By) = aL(x) + BL(y) for all vectorsz,y € L € V and scalersa, 3

where the leftpart is of V' the right part of W

TERMINOLOGY:

(1) L:V — W a mapping L from a vector space V into a vector space W

(2)L:V —V = L is an operator.

Example:

1:
The operator L : R? — R? given by L(v) = [ Zt2 | forv = [}1] is linear.
Llax+ By) = L[]+ 8 [5]) = L[ aotan]) = [Lam ]
Lox + By) = a [ 52| + B[ ?] = aL(~) + BL(y)
2:
b
L: Cla,b] = R given by L(f) = [ f(x)dz linear transformation:

a
b

b b
L(af + Bg) = [(af + Bg)(z)dz = o [ f(x)dz + B [ g(z)dz = aL(f) + BL(g)
3:
D : Cla,b] — Cla,b] given by D(f) = f' linear transformation.

Clla,b] = {f : [a,b] = R|f" € Cla,b]}

D(af+Bg) = (af + Bg)' = af' + Bg" = aD(f) + BD(g)

4:

The mapping L : Py — Py given by L(p) = p(3)2® + p(2)z? + p(1)z + p(0) is linear.

L(ap + Bq) = (e + Bg)(3) - 2* + (ap + Bg)(2) - 2% + (ap + Bg) (1) - = + (ap + B) (0)
= a(p(3)z® + p(2)2® + p(L)z +p(0)) + B(g(3)2* + q(2)2” + q(1)z + q(0))
= aL(p) + BL(q)
5:
The operator M : R? — R? given by M (v) = (“g) forv = (3.) is not linear.
U1

z3
M(2x) = (L) — AM(x) # 2M (%)
6:
Let A R™*™and L4 : R — R™ given by La(v) = Av forv € R" is linear:
La(ax+ By) = Alax + By) = aAx + BAy
7:
Let A e R™™ B e R"™™ and L4 g : R™*"™ — R™*" given by:
Lap=AX+ XB is linear:
Lap(aX +BY) = A(aX + BY) + (X + BY)B = a(AX + XB) + B(AY + YB) = aLa p(X) +
BL4 p(Y) so linear.
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Theorem:

Let L : V — W linear transformation then:
(2)=L(—v)=—L(v) forallveV

(3) Ifvq,...,v, vectors of V and as, v, are scalers then:
L(cyvy + ...+ apvp) = an L(v1) + ... + an L(vy)

Proof:

(1) L(Ov) = L(O : V) =0- L(V) =0y
(2)0, = L(0,) = L(v(—V)) = L(v) + L(—v) = L(-Vv) = —L(v)
(3) Repeated application of the definition.

Definition:

(1) Let L : V — W linear transformation. The kernel of L defined by:
ker(L) : {v € V|L(v =04}

(2) Let S be subspace V', the Image of S under L denoted by L(S) defined by:

L(S) := {w € W]w = L(v) for somev € S}
range(S) = L(V)

(3) If L : V. — W linear transformation and S subspace of V', then bothker L and L(S) subspaces.

Proof:

3:

(a) ker(L) subspace:

(-)0, €ker L # ()

(-) Let v € ker L and a be a scaler:
() L{av) = aL(v) = a0, = 04

= av € ker L

(b) Let v, vy € ker L

(-)L(vi+v2) =0, = vy +va €Eker L
(c) L(S ) subspace:

(-) 0w = L(0,) € L(S) # 0

(-) Letw € L(s) and ascaler:

aw = aL(v) = L(av) = aw € L(S)

(-) Let wy,wq € L(S5)

Wi + wo = L(Vl +V2) = W1 + Wy € L(S)
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Example:

1:
Dy : C*a,b] — Cla,b] given by Di(f) = f* and let S be supspace of C*[a,b] spanned by the
functions x ~ e for A > 0

ker Dy, = {f € C¥[a,b]| Dk (f) = Ocpap} = {f € C¥[a,b]|f*) = 0c(oy} = P

Dy(P,) ={g € Cl[a,b]lg = Di(f) for some f € P,} wheren >k
Dy(Py) = {g € Cla,b]|lg = f® for some f € P} = Py

Di(S) = {g € Cla,b]|g = D(f)for some f € S} = {g € Cla,b]|g = f* for some f € S} =S
2:
Lap:R**? 5 R?*2 given by L4 p(X) = AX + XB where A= B =[{}]

KerLa p :{XGR2X2|LA7B(X):Okzxz}f{X6R2X2|AX+XB Ogax2}
{Lealllgg1[24] + [2 411941 = (381}
[zsmzm (881} ={[ % %] la,b € R}
LAB(R2X ):{Y R2X2|Y:LAB( ) for some X € R?*?}
LAB(R ) ={Y e R?*?|Y = AX + ZBfor some X € R?*?}
={[eu sl =198 [oh] + 4] (e 4]y
={lesliles) = 23]+ (Ao = tls ) b ey
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Lecture 10

Matrix representations:
(1): L : R™ — R™, there exists A, xn s.t. L(x) = Ax

(2)E = (vy,...,vy)and F = (wy,...,w,) ordered basis for vector space V&W

Let L : V — W be a lin. transformation.

A xndefined bya; = [L(v,]p forj=1,...,n

Then [L(v)]r = A[v]g for allv e V

The matrix A is called the matrix representation of L relative to the bases ' and F’

If A is the matrix representing L relative to the bases EF'and F' and if:
x = [V]pandy = [wlp
Then L mapsvtow < A mapsxtoy
We can make a schedule of this:
veV EN wew

! !

x = [vlg € R"” EN y =[w]p €R™

Proof:

Vv=x1Vi+...+2,Vp
m
L(Vj) + a1; W1 + ...+ AmjWm = Z Qi Wy
=1

1=
n

L(v) = L(z1vi+ ...+ 2,vy) = Y 2;L(v))
j=1
L(v) = > #;( 20 aywi) = 22 ( 2 aiz;)wi
Jj=1 =1 =1 j=1

> a1,

j=1 ail . QA1p T
[L(V)]F = : =1 : | Ave

Z amjl'j Am1 oo Qmn In

i=1
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Example:

1:

We use the following schedule:
g Loooh

! I

veR> & 4]
h(z) = ae*® cos(wz) + be*” sin(wz)
[ h(z)dz = g(x) + D(g) = h
V =span{e*® cos(wr), e sin(wz)}
D:V =V given by D(f) = f'
E = F = (e’ cos(wz), e’ sin(wz))
D(e* cos(wx)) = Ae ™ cos(wx) — we” sin(wx)
D(e* sin(wz)) = weuler™® cos(wz) + Ae  sin(wx)
So we can make the following transition matrix:

A=[2,%]and from the schedule we know Av = [{] so: v = ﬁ [Zi;jrll;uﬂ
[ 0™ conln) + b s — e cosr) + S5 na s
2-

The linear operator L : Py — Py is given by L(p) = p(0) = p(1)x + p(2)x? + p(3)x3.
Let E = (1,z,2%,2%)and F = 1,1, +2,7 + 22,22 + 23. Find A

L(l) = 1-1+1-z+41-22+1-2®> = 0-141-(1+2)4+0:(z+2?) +1(z? +23)
L) = 0-141-2+2-22+32° = -2-142-(14+2)—1(z+a?) +3-(2?+2°)
Liz*) = 0-1+1-z+4-2°49-2> = —6-146-(1+x2)—5-(z+2*)+9-22+2%)
Lz®) = 0-1+1-2+8 22427 2% = —20-1420(1+x)—19(z + 2?) + 27(z> + z°)
0—-2 -6 —20
IEEE
13 9 27

Matrix representations w.r.t. two bases

Let L : V — V linear operator: E = (vyq,...,v,)and F = (wy,...,w, ) ordered bases vector space V.
S :transition matrix, basis change F'to E
If Aand B are matrices representing L w.r.t £ and F' respectively, then B = S~1AS

Proof:
v x=[v]g 2+ y=[wg « Y, y = Az < >y =ASu
I I e
1
v v 1 v )
veV —5 .+ wev |s  w=1L(v) B=5"1AS )
/ e —=+ [L(V)]& 5] = &
! ) I ¥ I
— u=[wr —E+ z=[wr e z=Bu —— y=5Bu . B
o ) [v]lr — [L{v)]F SB = AS
Definition:

Let A and B ben x n matrices. We say that B is similar to A if there exists a nonsingular ma-
trix S such that B = S~1AS
If B similar to A then A is similar to B
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Example:

Population dynamics:

[oeit ] =183 831 %]
[ ]=M"["5)]
L(x) = M(x)

E=((§],[§Dand F = (3] [7'])
[3]=2[5] +3[%]

[ =-103]+1[¢]

Where we can make the following transition matrix:
S=[57"]

We also know that:

L([§]) =0.7[5] +0.3[7]

L([§] =0.2[5] +0.8[]]

Where we can make the following transition matrix:
A=[§582]

We also know that:

L([3) =1[3]+0[7"]

L([7']) =0[31+05[7']

Where we can make the following transition matrix:
B = [(1) 0(.)5]

If we calculate SB = AS we will see that it is correct.

2:

The linear operator L : Py — Py is given by L(p) = p(0) + p(1)x + p(2)z? + p(3)2>.
Let E = (1,z,2%,2%)and F(1,1 + 2,2 + 22,22 + 23). Find A, Band S

1 = 1-140-2+0-2240-23
l+z = 1-1+1-2+0-22+4+0-23
r+z? = 0-1+1-z+1-2240-2°
2?2+22 = 0-14+0-2+1-22+1-23
1100
Which give us the matrix transition: S = {8 51 (1)]
0001
L) = 1-1+1l-xz+1-22+1-23
Liz) = 0-1+1-2+2-22+3.-2°
Liz*) = 0-1+1-z+4-22+9-2°
L(x*) = 0-1+1-2+8 - 22+27-23
1000
Which give us the matrix transition: A = {% ;1 5157]
1392
L) = 1-1+l-z24+1-2241-23 = 0-1+1-(14+2)+0-(z+2%) +1- (2% +2°)
Liz) = 0-14+1-2+2-2243-2° = —2-1+43-(1+z)—1-(z+2%) +4- (2% +23)
L(z?) = 0-1+1-2+4-2249-23 = —8-1+8-(1+z)—6-(x+2%) +12- (22 + 23)
L(z®) = 0-1+1-2+8-22+27-23 = —26-1+26-(1+x)—24-(x+2%) +36- (22 +23)
0-2-8 -2
Which give us the matrix transition: B = [(1) 38 _2264}
14 12 36
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Lecture 11:

Orthogonality:

Letxandy be two column vectors in R”. The product x”y is called the scaler product of x andy
Tl Y1

Sox=| : |andy = :
I‘n y.n

Then: xTy = 2191 + ... + Znyn

Eucledian length of a vector x € R defined by:
x| := VxTx = /a3 + 23 +... + a2

Observation:
[|x|| > 0 for allx
[Ix|| =0 iffx=0

Vi +a3ifr € R?
Va3 + 23+ 23ifz € R3

The distance between two vectors, x,y € R™ is defined as| x —y ||

In particular: ||x|| = {

Two vectorsx,y € R" are said to be orthogonal ifx”y = 0
We writex ly ifxandy are orthogonal

Phytagorean law:

Ifxly then:
)12+ NIyl = [Ix + ylI”
Wherexandy € R”

Proof:
Ix+yl*=x+y) " (x+y)=x"x+y"x+x"y+y'y =x"x+y"y = [Ix]* + ||yl

Angle between 2 vectors:

Ifxandy are 2 vectors inR%ZorR3and @ is the angel between them then:
x'y = |Ix||[lyll cos ¢

Proof:

Law of cosines we have:

ly —x|I* = [Ix[I* + [y | = 2[|x[[[y[| cos 6

Thus we get:

2||X||||§H cos 92: [1x/[* + II%’H2 —[ly —x]]?

=[x+ lyl* = (y —x)" (y —x)

= [Ix[]> + y* - x"x +y"x +xTy —yTy = 2x"y
= x"y = [x|/[ly| cos @
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T
So we see that cos§ = W
When both vectors are nonzero vectors.

Definition:

T
Scaler projection of x ontoy: o = ﬁ

T
Vector projection of xontoy: p = au = amy =2y

Cauchy-Schwartz inequality:

Letx,y € R" then:
x"y| < [xlyll

Observation:

=1< m < 1, because —1 < cosf < 1

Proof:

Ify = 0 then [x"y| < ||x[||ly| holds. Ify # 0, define: A = ﬁ‘yT”’Q

Then we have:

0 < lx— Ayl

= (x = Ay)"(x = Xy)

=xTx — ATy = \yTx + \2yTy
= [Ix|? - 235%xTy + (5%)%y Ty

== NS
= [IxI* ~ 2()ﬁyﬁ,2) T )ﬁyﬁ;)

T ,\2
= IxI? - 551

This implies that (xTy)? < [|x]|?||y]|?
Hence we get ’XT}” < [=[llyll
Notation:

If P& P, points in 3-space, then the vector from P to P, by Pl_PQ

Orthogonal subspaces:

Two subspaces X and Y of R". orthogonal ifx”y = 0 for everyx € X andy € Y’
We write X LY if X andY orthogonal.

Orthogonal complement:

Let X be subspace of R". Define X+ := {y € R"|x'y = Ofor allx € X}
The set X+ called orthogonal complement of X

Observation:

(1) X LY then X NY {0}
(2) X+ is a subspace
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Proof observation:

()Letx € X NY then |x||*> = xTx =0s0x =10
(2)0e Xt =Xxt#0

Lety € X+,anda a scaler.

Then for allx € X:

xT(ay) =axTy)=a-0=0=ay € X+

Lety;,y2 € X1, then for allx € X, we have:

xT(y1+y2) =xTy1 +xTx2=0+0=0=y; +ys € X+

Fundamental subspaces:

(-) Let A € R™*™. The null space of A and range of A defined by:
N(A) :={x e R"|Ax =0} and R(A) = {y € R™|y = Axfor somex € R"}

Theorem:

Let A € Rm x n, then N(A) = R(AT)+ and N(AT) = R(A)*

Proof:

Prove that N(A) C R(AT)*
=>x€N(4A)=Ax=0

= xTATz =0¥z € R™

= xTy =0,Vy € R(AT)

= x € R(AT): = N(A) C R(AT)*

Prove that R(AT)+ C N(A)

r € R(ATY: = xTy = 0,vy € R(AT)
=xTATz =0z € R™

= Ax=0

— x € N(4) = R(AT)L C N(A)

Because R(AT)L C N(A)and N(A) C R(AT)L, we can conclude that R(AT)+ = N(A)

Subspaces vs. their orthogonal complements

If S subspace of R™ then dim S+dim S+ = n. Moreover if {x1,...,x,} isa basis for S and {x,1,...,X,}
is a basis for S*, then {x;,...,x,} basis for R”

Proof:

If S = {0}, then S+ = R” and dimS+DimS+ =0 +n = n.

If S +# {0}, then let {x1,...,x,} basis for S

Define X = [x1 x2 ..« ]. ThenS = R(X)and that implies that S* = N(X7T). From rank-nullity
theorem, we have:

dimS+dimS* =dimR(z)+dimN(XT) =Rank(XT)+null(XT) =r+n—r=n

In order to show {x1,...,X,} basis for R™, enough to prove these vectors linearly independent.:
C1X1+coXo+ ...+ X, =0
Lety =cx1+... +x,andz = ¢ 41Xp41 + .. . + ¢pXn. Then we havey +z = 0and hecey = —z

term 1b 2020-2021 Page 37



Linear Algebra 1, University of Groningen H.M. Goossens

Soy andz belongs to S NS+ = {0}. HEnce:
X1+ ...+¢x.=0

Cr41Xp41 + ...+ CpXp =0

Therefore,ci = ... =¢, =0=c¢prp1=... =y

Orthogonal subspaces:

Let U and V' subspaces of vector space W if eachW can be wiitten uniquely as a sum ofu + v
whereu € U andv € V' then we say that W direct sum of U and V' written as:
w=U8V

Theorem:

If S subspaceR" thenR" = S P S+

Proof:

The theorem at fundamental subspaces implies that ever x € R™, can be written as:
X=X+ ...+ CXp +Cp1Xpp1+ ... F Xy =Uu+ vV

where {x1,...,x,} basis for S,and {x,.1,...,%,} abasisfor S*. Let S > u = c;x1+...+¢,.x, and v =
Cr41Xp41 + ...+ Xy € S+

For uniqueness, supposex = w + zwherew € Sandz € S+ then we have:u +v =x=w + 2z =
Ssu-w=z-veSt

Since S N S+ = {0}, we haveu — wandz = v

Theorem:

If S subspace of R", then (S+)* = S

proof:

x€S=xly, forally e St = 2¢€ (St)t=95C(SHt

x€ (St =x=u+v, whereu € Sandv € S+
SoveSt=vix,andviu=0=vIx=vi(u+tv)=vlv=|v|?
>v=0=x=ucS=(SHtcs

So therefore S = (S+)+
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Lecture 12

A e R™™andm > nandb € R™.
For eachx € R" define residual: r(x) = Ax —

We want to find% € R" such that ||r(x)| < ||r(x|| For allz € R".
So we want to minimize ||r(x)|| equivalently ||rx||?
LEAST SQUARE SOLUTION OF THE SYSTEM Ax = b: A vectorx satisfying the inequality.

Towards a solution:

S'subspace R™, for every b € R™, unique p of S closest tob so:
Ib —pl|l < |b—yl| wherey # pin S

b € Sclosest tobiffb—p € S+

The vector p is said to the projection of bonto S

Proof

Ssubspace R™ = R™ = S S+

= b =p+zwherebc R” p € S&z € S+

b —y[*=l(-p)+@-y)l°

Sinceb—-p=z¢€ Standp—y € S:

b —yl?>=1b-p|*+|p -yl

Due to Phytagorean law.Sincey #p = |[p—y]| >0
As such we can conclude that ||[b — p|| < [|b —y||

Solution:
Observation and theorems:

1.

that is the closest tob

OBS:Ifx is a least square solution of the system Ax = bandp = Ax ,thenp is the vector in R(A)

THM: Let S subspace of R™. For every b € R™, unique vectorp of S closest tob that is||b — p|| <
b —y|, for ally # p, in S. MOreover, a vectorp € S is closest to a given vector biffb—p € S+ 2:

OBS: Take S = R(A)

A vector X is a least square solution of Ax = b iff:

p = Ax is the vector in R(A) that is the closest tob iff:
b-p=b—-Ax € R(A)t = N(AT)iff AT(b - A%) =0

Iff AT Ax = ATb

THM:If A € R™*"™ is of rankn, then the normal equations:

AT Ax = ATb have a unique solution:
%= (ATA)"1ATp

proof

Enough to prove that AT A nonsingular.

Letz vector s.t. AT Az = 0

Then we have 0 = z7 AT Az = ||Az||?> = Az =0

Sincerank(A) = n columns of A linearly independent. = z = 0 = AT A nonsingular.
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Example:

1:
Find the best line fitting to the points (0, 1), (1, 3), (2,4) and (3, 4)

I |04 23
. ymazsb

1 3
a _
21 (b)_ 4
31 4

So the left matrix is matrix A and the right matrix is theb vector.

When we do: AT A:
2
o
Q1D (%
SoATA= (118)
At te same way calculate ATb = (23)
So now we want to calculate:
(¢ (5)=(3)
det(AT A) = 20

So(ATA) ™! =5 (% 14)

So(1) = 55 (5 18) (3) = (1Y)
So best line fora = 1andb=—|—% Soy:x—&—%

=

1
1
1
6
4

)
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Lecture 13

Eigen values and eigen vectors:

A square matrix.
EIGENVALUE OR CHARACTERISTIC VALUE: () exists x nonzero s.t. Ax = Ax
EIGEN VECTOR OR CHARACTERISTIC VECTOR: X

Example:
(131031 =1[8]=3-[F]and[{}][5] = [§] =3 [5]
observation

Following statements equivalent:

) Aeigenvalue of A

) (AI — A)x = 0 has a nontrivial solution.
) N(A — 4) # {0}

) (M — A)is singular

0

(-
(-
(-
(-
(-0det(M —A) =0

The book says A — Al instead of A\l — A but I am not sure or there is any difference.

Terminology:

N (M — A)eigen space cooresponding to A where A eigen value A
CHARACTERISTIC POLYNOMIAL: p,(A) = det(A4)
If A € R"™*™ thenp(A\) polynomial of degreen

complex eigenvalues of real matrices:

If Ais a square matrix, with real entries, then charecterisatic polynomial has real coefficients.

As such, all its nonreal eigenvalues occur in conjugate pairs.
Also the eigenvectors occurs in conjugate pairs:
Az=dz=>Az=Az=Az=)dz= )z
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Example:

without using the observation we made:

2-31
A= [} -2 ﬂ The characteristic polynomial p4(A) given by:
A) = det(\ — A) = | 7 ads 1
= —A) =] -1 22 -1

pa(Y) = det(A — 4) = | 2 ad> 1

We want htat det(A] — A) =
SoAA—=1)2=0=lambda =0V (A—=12=0= X =0V y3=1
Because a polynomial of degreen hasn roots.

Figen vector for A\; = 0:

= A\ —1)?

0=(\MI-A)x
[ ENTE N

Eigen vector for Ap 3 = 1:
= ()\1[ — A)X
[j 3 —11} [ié} This leads to: [ié] =« [ﬂ +4 [_01} 2
-13—1] L= 3 0 1
A=[21]
The characteristic polonomial p4 () given by:
pa=det(\I —A)=[*1 2] =(A—-1)2%+4

Ao=1+2
)\1*1+2i
= (M —A)x = [% 2] 3] this leads to[51] = a[}]
)\2—1—22
0= (Aol —A)x =[5 Z3][33]
This leads to[31] = a [ 1]

Product and sum of eigenvalues:

A — ail —ai2 N —Q1n
—a9g1 A — asy ... —Aagn
pa(A) =det(A ] — A) =
—0n1 —Qn2 A= Gnn

=N 4 pp A AL oA+ po
A=A)A=A2) ... (A= Ay)
AT — (A A AN L (1) A e A,

pa(N) = (A —ai1)(A—a)... (A —aum) + q(\) wheredeg(q) < n — 2
= A" — (a11 + a2 + ... + @pn) A" + G(N) where deg(q) < n — 2

tr(A) =M+ X+ ...+ Ay

TRACE (tr(A)): the sum of the diagonal elements of A.
pa(0) = pg =det(—A) = (=1)"det(A) = (=1)"MAa... Ay
USEFUL ABOUT DETERMINANT OF Adet(A) = A1 Aa... A\,
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Similarity:

Aand Bbothn xn
B& A similar = same characteristic polonomial and the same eigenvalues.

Proof:

S nonsingular matrix s.t. B = S~ AS then we have:
pB(A) = det(A — STTAS) = det(STH(AT — A)S) = det(S1) det(A — A) det(S) = det(A — A) =
pa(A)

Systems of linear differential equations:
Terminology:

Differential equations used to model dynamical systems in a variety of context including mechanical,
electrical, hydraulic etc. systems.

System of linear differential equation is of the form x’(t) = Ax(t)

Where’ denotes the derivative w.r.t. time variablet,x : R — R™ vector-valued function and A and nx
n matrix.

Initial value problem:

amount finding solution for x’(t) = Ax(¢) and x(0) = x¢ for an A,,x,, and a given n—vector x

solution

Considetr z(t) = e

real number a the exponential of a can be expressed by a power series of the form:
e*=14+a+ %a2—|—%a3+...

Similarly we define the matrix exponential by the power series:

ehi=T+ A4 F A+ 543+

Thanks to uniform convergence of the above series we have:

doth = L(T+tA+ Lt2A2+ Lt3A3 + . ) = A+ tA% + F1243 + ...

Leth = A(I +tA+ Ht2 A%+ ..) = Ae'?

Therefore, the solution of initial value problem above given by x(t) = e4x.

Indeed we havex'(t) = (e!4xq) = Aetxy = Ax(t) and x(0) = e” 4%y = %

matrix exponential of similar matrices:

If Aand Bbothn x n matrices and similar, thene?® = §~1e4S

proof

We can prove that B¥ = S~'AFSfor allk = 1,2, ..., by induction on k

From similarity we have: B = S~'AS

Assume B! = S71ALS for somel > 1

B*l' =DB.B' =S571A48.571AlS = STTAAIS = S—1AIFLS

Then: €® =I+B+3B*+... = I+5'AS+ ;S A25+... = STH I+ A+ $A%+..)S = 57 1eAS
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Observation:
s df . T
do dk
D= = D" =
d -
n d* |
n —d2
1 dy 1
IS 1 da 1 d3
=P = + +& -
1 dn L ' di
ed1
da
€
el =

If a given square matrix A is similar to a diagonal matrix D, then A = S~'DS for some

nonsingular matrix S ande? = S~1eP S

Example:

A =1[3}] Does there exists a nonsingular S € R**?s.t. A= S"1DS
SoSA=DS

_ [ea eb
DS = [ 7]
So thenea = 0and fc =0

Suppose that a = Othenc # 0 because S is a nonzero matrix. Thus f = Osincec = fdthenc =0 so

contradiction soa # 0

Suppose that e = Osince a = ebthen a is zero, which is not possible.
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Lecture 14

Diagonalization:

DIAGONALIZABLE MATRIX A exists nonsingular matrix X and diagonal matrix D s.t. X 1AX = D
We say X diagonalizes Aiff X "'AX = D < AX = XD

Example:

A=[§4]. X =[2}]andD = [§7]
We see AX = [¢d]and XD = {Zz }Z}
ClaimAX = XD =c=d=0

Supposec # 0 = c=ea =0 = e # 0 contradicts = ec =0
Supposed # Osinced = fb = f # 0contradicts fd = 0 If c = d = 0, then X must be singular.

Definition:

Ann X n matrix is diagonalizable iff it hasn linearly independent eigenvectors.

proof:

SPS A € R linearly independent eigenvectorsxy,...,x, Then X = [x1 x2 ... xs ]
Ntoe that AX = [Ax1 Axa ... Ax, | = [A1x1 doX2 .o AnXa |

AX = [x1 x2 ... xn | = XD and therefore A is diagonalizable.

A diagonalizable, then AX = X D for some nonsingular X and diagonal D
Hence Axy, = d;;x;. Sox; eigen vector corresponding to d;; nonsingularity of X implies that A hasn
linearly independent eigenvectors

Observation:

A diagonalizable, then X ~'AX = D nonsingular matrix X and a diagonal matrix D then:
Column vectors X eigenvectors of A

Diagonal elements D eigenvalues of A

X and D are not unique.

(recording columns of X and D would lead to a different pairs (X’, D’))

Theorem:

If A1, ..., A distinct eigenvalues(\; # A for¢ # j) of A with the corresponding eigenvectors x1, . . ., X,
then those vectors are linearly independent.

Proof:

r dimension subspace spanned by x1,Xa, ..., Xy

Supposer < k

Without lost of generality, we can assume that xy,...,x, linearly independent. Sincexy, ..., X, 11
SO exists scalersey, ..., ¢, not all zero s.t.:

ax1+...+cp1Xep1 =0
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Sincexy,...,x, linearly independent ¢,.;; must be nonzero.
Hence ¢, 11x,41 #0

and thuscy,cg,...,c,. can not be all zero.

Clel + ...+ CT+1AX7-+1 =0

cl)\lxl + ...+ cr+1)\r+1xr+1 =0

Cl(>\1 — )\T+1)X1 + ...+ CT(AT — >\r+1)xr =0

This contradicts the independence of x1, ..., X,

Thus, » must equal &

distinct eigenvalues:

Any square matrix with distinct eigenvalues is diagonalizable.

Example:

Ay =[3§]then pa, (A) = A? not diagonalizable.
Az = [§8] = pa.(N) = A2

= A, already diagonal.

= A, diagonalizable.

A=[74]

What is e

pa(A) = |2 3= A =-land\y =1

Eigen vectors for Ay = —1

0= (/\1[ - A)X

(23] =« [31]

Same way eigenvectors for Ao

(23] =811]

Xz[_llﬂandD—[_Olﬂ

AX =[5!3]=XD

x-1_1[1~1

A _ 2[15 ' -1 _ el o 171-17 _ 1 |ete P e—e | _ |cosh(l) sinh(1)
ef =X-e X _X[ 0 e] 5[1 1]_5[676—1 e+e_1}_ |:sinh(1) cosh(1)

Markov Chains:

STOCHASTIC PROCESS: sequence experiments, which the outcome at any stage depends on chance.
MARKOV CHAIN: Stochastic process with:

(1) Set of possible outcomes or states finite.

(2) probaibility of next outcome depends only previous outcome.

(3) probabilities constant over time.

If a Markov chain with ann x ntransition matrix A converges to a steady-state vector x ,then:
(1) x probability vector.
(2) A1 = Leigenvalue of A and x eigenvector beloning to A

If A\; dominant eigenvalue stochastic matrix A, Markov chain transition A converge to steady state
vector.
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